Ajax Mach3 Based CNC Kit

Operator's Manual Version 1.12 for DC3IOB

(Mach3 is a trademark of Newfangled Solutions, LLC)

Disclaimer of Software Warranty

NO WARRANTIES. THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AJAXCNC DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY AGAINST INFRINGEMENT, WITH REGARD TO THE SOFTWARE.

NO LIABILITY FOR DAMAGES. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION, AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL AJAXCNC BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF AJAXCNC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE CUSTOMER WILL INDEMNIFY, HOLD HARMLESS AND DEFEND AJAXCNC FROM AND AGAINST ANY CLAIMS OR LAWSUITS, INCLUDING FOR ATTORNEYS' FEES, THAT ARISE OR RESULT FROM THE USE OF THIS SOFTWARE.

CUSTOMER ACKNOWLEDGES THAT CUSTOMER HAS READ THIS AGREEMENT, UNDERSTAND IT AND AGREES TO BE BOUND BY ITS TERMS AND CONDITIONS. CUSTOMER FURTHER AGREES THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN CUSTOMER AND AJAXCNC WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN CUSTOMER AND AJAXCNC RELATING TO THE SOFTWARE.

Limited Hardware Warranty

- (1)By accepting delivery or by operating this product, you the Buyer accept all of the terms of this warranty. If you do not wish to accept the terms of this agreement, please contact AjaxCNC immediately to make arrangements for the return of the product. Restocking and shipping fees apply.
- (2)All software purchases are nonrefundable.
- (3)If payment is returned or rescinded the customer is responsible for returning all merchandise in likenew condition within 30 days at the customer's full expense.
- (4)At no time shall AjaxCNC be responsible for any shipping charges, whether to or from AjaxCNC.
- (5)This AjaxCNC product is covered under a limited warranty for the period of (1) year from the date of delivery. During this warranty period, AjaxCNC will repair or replace defective AjaxCNC-provided parts free of charge. The Buyer understands that the repair may include replacement of the product, parts, or components with functionally equivalent reconditioned parts, products, or components.
- (6)Warranty repair is subject to inspection by AjaxCNC to determine factory defect. Only those parts, products, or components determined by AjaxCNC to have factory defect will be covered by this limited warranty. In the event that AjaxCNC determines the returned parts were not defective as shipped from AjaxCNC, the Buyer shall pay all subsequent costs incurred by AjaxCNC due to part replacement and/or repair.
- (7)An AjaxCNC issued RMA number is required in order for AjaxCNC to accept return shipments of defective parts, products, or components. The Buyer is responsible for the shipping charges to/from AjaxCNC. All repairs will be sent via UPS Ground. Expedited shipping charges will only be incurred at the Buyer's expense.
- (8)AjaxCNC's warranty applies only to AjaxCNC provided parts, products, or components. AjaxCNC is in no way responsible for equipment or machinery manufactured by or sold by others.
- (9)This warranty does not cover unauthorized modifications of hardware or software made by the Buyer or others. In the event that modifications are made, all AjaxCNC warranties and support will be terminated.

- (10)This warranty does not cover damage caused by abuse, improper maintenance, improper installation, operator error, neglect, accident, or acts of God.
- (11)AjaxCNC is in no way responsible for damage incurred to parts, products, or components during their installation. The Buyer understands that any work performed by themselves, or third-party agents, including AjaxCNC referred Independent Service Technicians, is NOT covered by this limited warranty.
- (12)In no event will AjaxCNC be liable to you, the Buyer, for any damages caused by your failure to perform work or other responsibilities. AjaxCNC is not responsible for any lost profit, lost savings, lost earnings, or other incidental or consequential damages, even if AjaxCNC has been advised of the possibility of such damages. AjaxCNC is not liable for any claim made by you based on any third-party claim.
- (13)AjaxCNC makes no express or implied warranties for this product, with regard to the use, merchantability or fitness for a particular purpose.
- (14)Technical Support is limited and at the sole discretion of AjaxCNC. Email, phone and on-site service are available for a fee. Complete details are available on our website at www.ajaxcnc.com/ tech_support.htm.
- (15)This agreement is a contract between the customer (you) and AjaxCNC. You must read, agree with and accept all of the terms and conditions contained in this agreement. AjaxCNC reserves the right to modify this agreement at anytime and it shall become effective immediately upon signing. Your signature below indicates you have read the entire terms and conditions in this document and agree to be bound by them.

I have read, understand and accept the above terms and conditions:

Name (print)

Signature

Date

Table of Contents

1 Introduction	6
2 Hardware Setup	6
2.1 Ajax MPU11	6
2.2 DC3IOB	7
2.3 Image of Connections	8
2.4 Encoder Basics	9
3 Software Installation	11
4 Mach3 Setup	12
4.1 Axis Setup	12
4.2 Spindle Setup	14
4.3 Axis Reversal	
4.4 General Brain Setup	15
4.5 Ajax Coolant Brain	16
4.6 Ajax Lube Brain	16
4.7 Ajax Enables Brain	17
4.8 Ajax Cutoff Brains (X, Y and Z)	18
4.9 Ajax Spindle Brain	
4.10 Ajax Continuous Jog Brains (X, Y and Z)	20
4.11 Ajax Incremental Jogging Brain	21
4.12 Ajax Limit Inputs Brain	22
4.13 Ajax Limit Handling Brain	22
4.14 Ajax Plot Gather Brain	
4.15 Ajax MPG Axis Brain	23
4.16 Ajax MPG Disable Brain	
4.17 Ajax MPG Enable Brain	25
4.18 Ajax MPG Multiplier Brain	
4.19 Ajax Pendant Aux Brain	
4.20 Ajax Pendant Coolant Brain	28
4.21 Ajax Pendant Feed Brain	29
4.22 Ajax Pendant Jog 1 Brain	
4.23 Ajax Pendant Jog 2 Brain	
4.24 Ajax Pendant Jog 3 Brain	
4.25 Ajax Pendant LEDs Brain	
4.26 Ajax Pendant Spindle 1 Brain	
4.27 Ajax Pendant Spindle 2 Brain	
4.28 Ajax Pendant Spindle 3 Brain	
4.29 Add On Boards	
4.30 Fourth Axis Setup	
4.31 MPG Setup (MPU11 Based)	
5 Diagnostics and Tuning	
5.1 Axis Plot	
5.2 Ajax Configuration Utility	
5.3 Preliminary Motor Tuning	
5.4 Initial Positioning	
5.5 Tuning Kp	47

5.6 Tuning Kd	
5.7 Tuning Kv1	49
5.8 Adjusting Kg	
5.9 Adjusting Maximum Velocity	
5.10 Adjusting Acceleration.	
5.11 Drag Plot Macro	53
5.12 Backlash Compensation	
6 Mach3 Operation	
6.1 Homing	
6.2 Jogging	57
6.3 Running a Job	57
6.4 A Note About Feed Hold	
6.5 Rounded Corners	
6.6 Probing and Digitization	59
7 Appendices	61
7.1 Input Reference	
7.2 Output Reference	62
7.3 Ajax Mpull On-board I/O Reference	
7.4 Debounce Settings	
7.5 Control Pendant Reference	65

1 Introduction

The Mach Ajax Plugin is designed as a simple way to run a CNC machine at high speeds and low headaches. Instead of driving stepper motors over the parallel port, the plugin allows Mach3 to smoothly command the motion of servo motors over a direct Ethernet connection. G Code programs consisting of many small moves (digitized shapes for example) can be run at full speed without problem.

2 Hardware Setup

The kit you purchased should contain two printed circuit boards – an Ajax MPU11 board and a DC3IOB.

2.1 Ajax MPU11

The Ajax MPU11 board connects to your computer with a standard ethernet cable. Your computer will need to have at least one network adapter card installed, though two are recommended if you intend to use your computer for anything other than CNC operation. It looks like this...

2.2 DC3IOB

The DC3IOB connects to your Ajax MPU11 board with 4 fiber optic cables (to isolate your computer from any electrical feedback that could otherwise cause damage). Only fiber ports 1, 3, 4 and "MPU11 5" are used – the other 2 ports should be capped.

Port 1 on the DC3IOB should connect to port 1 on the Ajax MPU11.

Port 3 on the DC3IOB should connect to port 3 on the Ajax MPU11.

Port 4 on the DC3IOB should connect to port 4 Drive on the Ajax MPU11.

The Port labeled "MPU11 5" on the DC3IOB should connect to port 5 Drive on the Ajax MPU11 (not port 5 Legacy)

2.3 Image of Connections

Your major connections should look something like the image below (servos, encoders, and I/O wires are not shown)

2.4 Encoder Basics

Encoder Type:

• Ajax MPU11 hardware requires quadrature, differential encoders which operate on 5VDC. This is the most common type of encoder. Encoders labeled "TTL type" (non differential) are unsuitable, and fortunately are quite rare.

Encoder Signals:

- The following signals must be present and wired: A, /A, B, /B, Z, /Z, +5VDC and ground. Note: The Z channel is sometimes labeled as I, C or "marker". The "/" symbol may also be expressed as "-", "NOT" or "!" or a line over the letter, it means the signal is the complement (opposite) of the channel specified.
- Signal levels: The "low" signal level must be less than 0.5 VDC and the "high" signal level must be at least 3.5 VDC.

Encoder Resolution:

• Typical Machine tool applications (milling machines, lathes and routers) require at least 1000 line (4000 counts per rev) encoders. We recommend and sell 2000 line (8000 counts per rev) encoders. To achieve reasonable accuracy and smooth motion, the encoder/motor/ballscrew configuration must achieve a minimum resolution of 20,000 encoder counts per inch of travel (787 counts/mm). For a typical knee mill which uses a 5tpi (turns per inch) ballscrew and has the motors belted at a 1:1 ratio, a 1000 line encoder just meets the minimum counts per inch. Which is 20,000 for smooth motion. The 1000 line encoder will work. However, a 2000 line encoder (8000 counts per rev) would be a better choice. Older 250 and 500 line encoders will not work to satisfaction.

Some Examples:

- 5 turns per inch ballscrew belted at 2:1 with the servo motor = 10 turns of the servo motor per inch of axis travel
- 10 turns per inch x 4000 counts per rev (1000 line) = 40,000 counts per inch
- 10 turns per inch x 8000 counts per rev (2000 line) = 80,000 counts per inch.
- 5 turns per inch ballscrew belted at 1:1 with the servo motor = 5 turns of the servo motor per inch of axis travel
- 5 turns per inch x 8000 counts per rev = 40,000 counts per inch of axis travel.

Encoder wiring

- MUST be shielded, twisted pair cabling.
- Encoder wiring at MPU11: DB9 Body = Cable Shield

Pin Function		
1 No Connection	1 5	5 1
2 GND	(00000)	(00000)
3 Z\		
4 A\	6 9 D: 0:1	96
5 B\	Pin Side	Solder Side
6 Z		
7 A		
8 B		
9 +5 VDC		

Encoder Errors:

- The MPU11 has built in encoder error checking. It will try to cause a fault if your encoder connections become loose, disconnected, or subject to noise.
- If your encoders do not meet the above specifications, you may encounter encoder error faults.
- For this reason, the plugin configuration utility allows you to disable the encoder error checking. WARNING: This will prevent the MPU11 from detecting any encoder errors. It will no longer fault if the encoder is disconnected. If the encoder becomes disconnected, it may cause a motor run-away situation which will only fault after an axis position error or a full power without motion fault.

3 Software Installation

Before beginning this step, you should have already installed the Mach3 software from Newfangled Solutions, LLC.

Insert the CD that came with your kit into your computer's CD Rom drive, and your computer should automatically start the setup program for you. Follow the onscreen prompts, and make sure you install the Ajax software into the same directory as your Mach3 software (typically C:\Mach3).

🕹 Mach Ajax Plugin Setup	K
Choose Install Location Choose the folder in which to install Mach Ajax Plugin.	
Setup will install Mach Ajax Plugin in the following folder. To install in a different folder, click Browse and select another folder. Click Install to start the installation.	
C:\Mach3 Browse	
Space required: 8.1MB Space available: 130.7GB	
Nullsoft Install System v2.45	-

After the software has been installed, the Setup program will help you configure your computer so it can communicate with the Ajax MPU11. In order to do so, you should select the network adapter you wish to use with the Ajax MPU11 from the list provided. The IP address of the selected adapter will be changed to 10.168.41.1, which is the only address that the Ajax MPU11 recognizes.

NOTE: Two network adapters must be installed in your computer if you intend to use your computer to connect to the internet and to the Ajax MPU11 at the same time. That is to say, the Ajax MPU11 requires a dedicated network adapter.

🕹 Mach Ajax Plugin Setup	
Network Adapter Setup We'll help you setup your network adapter for use with your Ajax hardware	
The Ajax hardware connects to your PC through a network adapter, which must static IP address of 10.168.41.1 Please select the network adapter you would like to use with the Ajax hardware, attempt to change it's IP address for you.	
None	•
Nullsoft Install System v2,45 <u>Rack</u> Lext >	Cancel

4 Mach3 Setup

The setup program should create a shortcut on your desktop labeled "Mach Ajax Plugin". Clicking on this shortcut will start Mach3 using our default settings, which will help you get running faster. The steps below should also help – but please see the full Mach3 Operator's manual for detailed instructions.

The values shown in the following screen shots are the default values that the setup program establishes when it is run. You will likely need to deviate from these values, depending on the actual machine you are setting up.

4.1 Axis Setup

By default, three motor axes (X, Y, and Z) are setup.

In order to change the configuration, go to Config \rightarrow Ports and Pins in Mach3's menu bar. From here, click the Motor Outputs tab. Each motor that you intend to use must have a green check mark in the Enabled column (otherwise it will not be recognized). All other settings on this tab are ignored by the Mach Ajax Plugin.

			Dir Pin#	Dir LowActive	Step Low Ac	Step Port	Dir Port
(Axis	4	2	6	X	X	1	1
/ Axis	4	3	7	X	X	1	1
Z Axis	4	4	8	X	X	1	1
A Axis	x	5	9	X	X	1	1
8 Axis	X	0	0	X	X	0	0
C Axis	x	0	0	X	X	0	0
5pindle	X	0	0	X	X	0	0

In addition, each axis motor must also have a green check mark in the Enabled column on the Output Signals tab (Enable1 is for the X axis, Enable2 is for the Y axis, and so on). This will cause an output signal to be sent (via Brains) which will in turn cause power to flow to the motor. All other settings on this tab are ignored by the Mach Ajax plugin.

ngine Configura	tion Ports & Pins	;			
Port Setup and Axis	Selection 🗍 Motor Outp	uts Input Signals 0	utput Signals Encoder	r/MPG's Spindle Setup	Mill Options
Signal	Enabled	Port #	Pin Number	Active Low	<u>^</u>
Digit Trig	X	1	0	X	
Enable1	4	1	0	X	
Enable2	4	1	0	X	
Enable3	4	1	0	X	
Enable4	X	1	0	X	
Enable5	X	1	0	X	
Enable6	X	1	0	X	
Output #1	X	1	0	X	
Output #2	X	1	0	X	
Output #3	X	1	0	X	
Output #4	X	1	0	X	~
	Pins 2 - 9 , 1, 14, 16, and	117 are output pins. No	o other pin numbers sha	ould be used.	
				ОК	Cancel <u>Apply</u>

Also, because the Mach Ajax Plugin is a closed loop system, each axis motor should have an encoder setup on the Encoder/MPG's tab. Again, a green check mark is needed in the Enabled column, but Counts/Unit must also be set for each axis.

Eng	Engine Configuration Ports & Pins										
Po	rt Setup and A	xis Selection	Motor Outpu	its Input Signal	ls Output Sig	gnals Encode	er/MPG's	Spind	le Setup Mill O	ptions	
					1			-			
	Signal	Enabled	A -Port #	A-Pin #	B -Port #	B-Pin #	Count	s/Unit	Velocity		
	Encoder1	∢	0	0	0	0	40000	.000	100.000000		
	Encoder2	R	0	0	0	0	40000	.000	100.000000		
	Encoder3	∢	0	0	0	0	40000	.000	100.000000		
	Encoder4	X	0	0	0	0	1.000	000	100.000000		
	MPG #1	X	0	0	0	0	1700.0	00000	35.000000		
	MPG #2	X	0	0	0	0	1.000	000	100.000000		
	MPG #3	X	0	0	0	0	1.000	000	100.000000		
								ОК	Cancel	App	y

4.2 Spindle Setup

To setup the maximum spindle speed for your mill, select Config \rightarrow Spindle Setup from Mach3's menu bar. This max speed value is the value at which full power is delivered to the spindle motor. So, if the maximum is set to 8000, and the commanded spindle speed is 4000 ("M3 S4000"), half power will be delivered to the spindle motor.

Pulley Selection			D
Current Pulley	Min Speed	Max Speed	Ratio
Pulley Number 4	• 0	8000	1
Reversed			
			OK
			<u>OK</u>

4.3 Axis Reversal

If you find that the axes of your machine move in the opposite direction of what they should, go to the Config \rightarrow Homing/Limits menu and set a green check mark in the Reversed column for any axis you wish to reverse.

Motor Hom	ne/SoftLim	its						
			Entries	are in setup u	nits.			
Axis	Reversed	Soft Max	Soft Min	Slow Zone	Home Off.	Home Neg	Auto Zero	Speed %
x	x	10.00	-10.00	1.00	0.0000	X	4	20
Y	x	5.00	-5.00	1.00	0.0000	X	4	20
z	x	1.00	-5.00	1.00	0.0000	X	4	20
A	x	100.00	-100.00	1.00	0.0000	X	4	20
в	X	100.00	-100.00	1.00	0.0000	X	4	20
с	X	100.00	-100.00	1.00	0.0000	X	4	20
	location coo							
X 0	A	0						
Y O	В	0						
Z O	c	0						OK

4.4 General Brain Setup

Mach3 has a built in programmable control system (Brains) that allows certain outputs to be set when certain conditions are met. Your kit comes with several default brains, which can be enabled or disabled from Mach3's Operator \rightarrow Brain Control menu.

Of particular interest are the use of OEM Triggers 1 through 6 to control the Jogging brains and the use of Input 1 through 3 to control the Plot Gather brain. Also note that ModBus registers are used in brains to indicate Ajax MPU11 inputs and outputs (in order to provide a full range of inputs and outputs). The ModBus protocol isn't actually used.

If you are controlling more or less than the default of 3 axes, you will also want to review the Ajax Enable brains that you are using. You may also have to add brains of your own to control jogging on the additional axes.

Brain Control	×
Loaded Brains Ajax Enables.brn Ajax Enables.brn Ajax Flood.brn Ajax Incremental Jogging Ajax Limit Inputs.brn Ajax Limit Handling.brn Ajax Lube.brn Ajax Mist.brn Ajax Plot Gather.brn Ajax Spindle.brn	 Enabled Reload Brain Reload All Brains Enable All Disable all ViewBrain Cancel
J	ОК

Also, the Ajax Spindle brain assumes that Output 1 and Output 2 will be used to control the spindle direction and enable state. These are located on the Spindle Setup tab of the Config \rightarrow Ports and Pins menu within Mach3. Likewise, the Flood and Mist brains assume the use of Output 4 and 3. These values are already set, and you shouldn't change these values unless you make corresponding changes to the spindle control brain.

Engine Configuration Ports & Pins	
Port Setup and Axis Selection Motor Outputs Relay Control Disable Spindle Relays Clockwise (M3) Output # 1 CCW (M4) Output # 2 Output Signal #'s 1-6 Flood Mist Control Disable Flood/Mist relays Delay Mist M7 Output # 4 Flood M8 Output # 3 Output Signal #'s 1-6 ModBus Spindle - Use Step/Dir as well	Input Signals Output Signals Encoder/MPG's Spindle Setup Mill Options Motor Control Special Functions Use Spindle Feedback in Sync Mode: PWM Control Use Spindle Feedback in Sync Mode: Closed Loop Spindle Control PWM Control Step/Dir Motor P 0.25 WMBase Freq. 5 1 D 0.3 Spindle Speed Averaging Spindle Speed Averaging General Parameters Seconds Special Options, Usually Off W Delay Spin UP Seconds Seconds W Delay Spin DOWN Seconds Corch Volts Control W Delay Spin DOWN Seconds Torch Volts Control Immediate Relay off before delay Torch Auto Off Seconds
	OK Cancel Apply

4.5 Ajax Coolant Brain

🗃 Ajax Coolant.brn -	
Eile View Commands Scroll Help	
OUTPUT3 No-Operation AND OR Pass Signal	
MOD:788 Pass Signal	MOD:3-MA
MOD:789 Pass Signal AND OR inputs	
MOD:788 Flip Signal	
OUTPUT4 Pass Signal AND Inputs	
MOD:788 Pass Signal AND inputs	MOD:4-MA
MOD:790 Pass Signal AND OR inputs	
MOD:788 Flip Signal	
Ready	

Mach3 will normally turn on Outputs 3 and 4 to indicate that Mist and Flood coolant relays should be active – this brain passes those signals along to the MPU11 (using ModBus outputs 3 and 4). However, the control pendant (which is optional add-on hardware) allows the user to manually control coolant. The state of ModBus output 788 indicates whether automatic or manual coolant mode is selected (1 for automatic, 0 for manual) – and if manual coolant mode is selected, the coolant values from the pendant are passed along instead (789 and 790).

4.6 Ajax Lube Brain

👹 Ajax Lube.brn -	
Eile <u>V</u> iew Commands Scroll <u>H</u> elp	
C 📽 🖬 🤋 🕇 🗕 I	
IsMoving Pass Signal	MOD:2-MA
	~
Ready	NUM

The Ajax Lube Brain turns on ModBus Output 2 whenever the machine is moving, which then gets passed along to the Ajax MPU11. This should cause your Lube relay to trip on your control board.

4.7 Ajax Enables Brain

👹 Ajax Enables.brn -		X
Ele View Commands Scroll Help		
Enable1 Pass Signal	MOD:351	^
Enable2 Pass Signal	MOD:352	н
Enable3 Pass Signal	MOD:353	
Enable4 Pass Signal	MOD:354	
Enable5 Pass Signal	MOD:355	
Enable6 Pass Signal	MOD:356	
<		~
Ready		//

In order for each of your motors to get power, the corresponding ModBus Output (351 to 356) needs to be set. Mach3 makes the determination of which motors are Enabled, and this brain simply passes that information along to the Ajax MPU11.

🗅 🚅 🖬 🛛 💡	+ = 4					
X-Limit Sw	No-Operation Pass Signal	OR	Invert	AND	OR	
X-Limit Sw	No-Operation Pass Signal	OR inputs	Flip Signal	AND inputs		
Enable1	No-Operation Pass Signal]		_		
OEMTRIG	No-Operation Pass Signal	OR	AND	OR		
MOD:361	No-Operation Pass Signal	OR inputs	AND inputs		OR inputs	- Enable1
X-Limit Sw	Invert Flip Signal]				
OEMTRIG	No-Operation Pass Signal	OR	AND	OR inputs		
MOD:362	No-Operation Pass Signal	OR inputs	AND inputs			
X-Limit Sw	- Invert -⊣Flip Signal]	_			

4.8 Ajax Cutoff Brains (X, Y and Z)

These three brains cause the motor enables to turn off in Mach3, whenever a limit switch is tripped. This is a safety feature to help prevent your machine from crashing into its hard stops should it overrun its limits. These brains also re-enable power to the motor whenever jogging is attempted and the corresponding limit switch is not tripped (which allows you to jog your machine off of the limit switch should you hit it).

4.9 Ajax Spindle Brain

🎒 Ajax Spindle.brn -						
File View Commands Scroll Help						
No-Operation	No-Operation Pass Signal	AND	OR]		~
OUTPUT1 Pass Signal	OR	AND inputs	-			
OUTPUT2 Pass Signal	OR inputs		OR inputs			
MOD:769 Flip Signal	AND	No-Operation				
MOD:784 Pass Signal	AND inputs	Pass Signal				
MOD:769 Pass Signal	AND	OR				
OUTPUT2 Pass Signal	AND inputs					
MOD:769	AND	OR inputs			INIOD, 13-IVI	
MOD:803 Pass Signal	AND inputs					~
<						>
Ready					NUM	

The Ajax Spindle Brain determines whether or not the Spindle Enable output (ModBus 14) and the Spindle Direction output (ModBus 13) should be set – which in turn cause two relays on your control board to respond. The state of ModBus output 769 is used to indicate whether the optional control pendant is in automatic spindle control mode (a value of 1) or manual spindle mode (a value of 0). In automatic mode, Mach's Outputs 1 and 2 are used to determine the values for the Spindle Enable and Spindle Direction outputs. In manual mode, ModBus output 784 is used to determine whether the spindle is enabled, and ModBus output 803 is used to indicate its direction (0 for clockwise, 1 for counterclockwise).

4.10 Ajax Continuous Jog Brains (X, Y and Z)

These three brains control continuous jogging, by sending signals to the Ajax MPU11. The signals are arranged in pairs, and tell the Ajax MPU11 to turn each motor one direction or the other. ModBus Outputs 361 and 362 control the X axis, for example. So basically, the OEM Trigger values are used to determine if each axis should be jogged in the positive or negative direction, or not at all (1, -1 or 0). ModBus Input 750, 751, and 752 are also used to determine if each axis is reversed – and if so, the sign of the formula is reversed. The limit switch values are also used to prevent continuous jogging toward a tripped limit switch.

4.11 Ajax Incremental Jogging Brain

This brain passes the OEM Trigger presses that control jogging to Jog Button presses in Mach3, but only if Jogging is allowed. It also prevents movement if the MDI line has cursor focus, by checking the value of ModBus Input 767.

4.12 Ajax Limit Inputs Brain

👹 Ajax Limiit Inputs.brn -		
<u>File V</u> iew Commands Scroll <u>H</u> elp		
D 🗃 🖬 🤋 + 🗕 🕹		
MOD:1-M Pass Signal	X-Limit Swi	^
MOD:2-M No-Operation Pass Signal	X-Limit Swi	=
MOD:3-M Pass Signal	Y-Limit Swit	
MoD:4-MPass Signal	Y-Limit Swit	
MOD:5-M Pass Signal	<mark>Z-Limit Swit</mark>	
MOD:6-M Pass Signal	Z-Limit Swit	~
< <u> </u>]]	>
Ready	NUM	_ //

This brain simply passes the limit switch inputs supplied by the Ajax MPU11 into Mach3's limit switch inputs.

4.13 Ajax Limit Handling Brain

🎒 Ajax Limit Handling. brn -	
<u> E</u> ile <u>V</u> iew Commands Scroll <u>H</u> elp	
□ 🛎 🖬 💡 + 🗕 单	
X-Limit Sw Pass Signal OR AND	
X-Limit SwPass Signal	
Y-Limit Swi Pass Signal	
Y-Limit Swi Pass Signal OR inputs AND	inputs
Z-Limit Swi Pass Signal	
Z-Limit Swi Pass Signal	
MoD:441 Pass Signal Flip Signal	
K)	
Ready	NUM //

This brain determines what to do when a limit switch is tripped, and by default it will act as if the Stop button was pressed. The only exception is if ModBus Output 441 (the ignore errors flag) is set, in which case no action is taken when the limit switch is tripped (used in the M92 homing macro).

4.14 Ajax Plot Gather Brain

🎆 Ajax Plot Gather.brn -	
<u>E</u> ile <u>Vi</u> ew Commands Scroll <u>H</u> elp	
D 🛱 🖬 💡 🕇 🗕 💵	
INPUT #1 No-Operation OR Pass Signal No-Operation OR INPUT #2 Pass Signal OR inputs	MOD:408
INPUT #2 Pass Signal OR inputs No-Operation Pass Signal	
No-Operation Pass Signal	
No-Operation Pass Signal	<mark>- MOD:406</mark>
	>
Ready	NUM //

This brain checks Inputs 1, 2, and 3 (normally F1, F2, and F3) – and sends a corresponding plot request to the Ajax MPU11. The Diagnostics and Tuning section below provides more information on how to use this brain.

4.15 Ajax MPG Axis Brain

👹 Ajax MPG Axis, brn -		
<u>File Yi</u> ew Commands Scroll <u>H</u> elp		
MOD:488 Pass Signal	MPG1 axis x	
MOD:489 Pass Signal	MPG1 axis y ■	
MOD:490 Pass Signal	MPG1 axis z	1 00 00 00 00 00 00 00 00 00 00 00 00 00
MOD:491 Pass Signal	MPG1 axis a	
MOD:492 Pass Signal	MPG1 axis b	<u> </u>
MOD:493 Pass Signal	MPG1 axis c	
<	×	
r - 2 Ready	NUM /	<u> </u>

The 100 step MPG offered by Ajax CNC has an Axis selection knob, and this brain uses the state of that knob to tell Mach3 which axis is selected.

🎒 Ajax MPG Disable.brn -<u>File View</u> Commands Scroll <u>H</u>elp 🗅 🚅 🔒 🤶 🕇 🗕 🚣 AND No-Operation OR Invert MOD:488-Flip Signal Invert MOD:489-Flip Signal Invert MOD:490-Flip Signal Invert MOD:491-. Flip Signal AND inputs Pass Signal Invert MOD:492-. Flip Signal Invert MOD:493-Flip Signal No-Operation MPG Jog Pass Signal Jog Mode OR inputs AND OR No-Operation X-Limit Sw. Pass Signal No-Operation X-Limit Sw., Pass Signal No-Operation Y-Limit Swi. Pass Signal OR inputs No-Operation Y-Limit Swi. Pass Signal AND inputs No-Operation Z-Limit Swi. Pass Signal No-Operation Z-Limit Swi. Pass Signal No-Operation MPG Jog Pass Signal > NUM Ready

4.16 Ajax MPG Disable Brain

The axis selection knob on the Ajax MPG also has an "Off" setting. This brain tells Mach3 to disable the MPG (and return to continuous jog mode) if "Off" is selected. It also disables MPG mode if any of the limit switches are tripped. NOTE: If you are using a non-Ajax MPG (for example an encoder plugged into the Encoder 6 port on the Ajax MPU11), this brain will continually disable your MPG unless the brain itself is disabled.

🎒 Ajax MPG Enable.brn -<u>File View</u> Commands Scroll <u>H</u>elp 🗅 🚅 🔛 🤶 🕇 🗕 🚣 AND No-Operation OR MOD:488-Pass Signal No-Operation MOD:489-Pass Signal No-Operation MOD:490-Pass Signal OR inputs No-Operation MPG Jog On MOD:491-AND inputs Pass Signal No-Operation MOD:492-Pass Signal No-Operation MOD:493-Pass Signal Invert No-Operation MPG Jog Pass Signal Flip Signal No-Operation MOD:481-.. MPG Jog Pass Signal > NUM Ready

4.17 Ajax MPG Enable Brain

This brain causes the axis selection knob of the Ajax MPG to automatically turn MPG mode on, whenever the knob is not turned to the "Off" position. It also causes the LED on the MPG to light up (ModBus output 481) if Mach3 is in MPG mode.

4.18 Ajax MPG Multiplier Brain

This brain causes the multiplier knob (x1, x10, x100) on the Ajax MPG to select the jog increment to use. These are setup by default to 0.001, 0.01, and 0.1 respectively. These values can be configured in Mach3's Config \rightarrow General Config menu.

4.19 Ajax Pendant Aux Brain

🎒 Ajax Pendant Aux.brn -		
Eile View Commands Scroll Help		
🇅 😅 🖬 🤶 🕇 🗕 프		
MOD:770 Pass Signal	MOD:770	^
MOD:771 Pass Signal	MOD:771	
MOD:772 Pass Signal	MOD:772	=
MOD:775 Pass Signal	MOD:775	
MOD:776 Pass Signal	MOD:776	
MOD:777 Pass Signal	MOD:777	
MOD:780 Pass Signal	MOD:780	
MOD:781 Pass Signal	MOD:781	
MOD:782 Pass Signal	MOD:782	
<		~
Ready	NUM	

Ajax CNC offers an operator's control pendant, and this brain simply shows how to use the Aux inputs to light up the LEDs of the associated keys.

e <u>V</u> iew Commands Scroll <u>H</u> elp					
〕 ☞ 🖬 💡 + 🗕 单					_
MOD:788 Flip Signal	No-Operation Pass Signal	No-Operation Pass Signal	EOR	Invert	
MOD:788 Pass Signal	No-Operation Pass Signal	AND			
MOD:786 Pass Signal	Compare A:B	AND inputs	Excl OR inp	Flip Signal	- MOD:788
MOD:788 Flip Signal	A = B	-			
MOD:788 Pass Signal					
MOD:789 Pass Signal		EOR	Invert		
MOD:788 Flip Signal	AND inputs	-			100.700
MOD:799 Flip Signal		Excl OR inp	Flip Signal		— MOD:789
MOD:789Flip Signal	No-Operation Pass Signal				
MOD:789 Pass Signal]				
MOD:790 Pass Signal		EOR	Invert		
MOD:788 Flip Signal	AND inputs	-			MOD-700
Invert MOD:809 Flip Signal		Excl OR inp	Flip Signal		— <mark>•</mark> MOD:790
MOD:790 Flip Signal	No-Operation Pass Signal				
MOD:790 Pass Signal]				

4.20 Ajax Pendant Coolant Brain

This brain allows the user of a control pendant to manually control the Flood and Mist relays.

4.21 Ajax Pendant Feed Brain

This brain converts the (8 or 12) output bits generated by the Feedrate Override knob on the Ajax control pendant into a number that Mach3 can use for its feedrate.

4.22 Ajax Pendant Jog 1 Brain

👹 Ajax Pendant Jog 1.brn -		
Eile View Commands Scroll Help		
MOD:793 Pass Signal	AND	
MOD:785	AND inputs	Jog Mode
MOD:793 No-Operation Pass Signal		
MOD:793 No-Operation Pass Signal	AND	
MOD:785	AND inputs	Jog Mode I
MOD:793		
MOD:793 Pass Signal		MOD:785
<		
Ready		NUM

This brain makes the Incremental / Continuous jog mode selection button on the Ajax control pendant function.

4.23 Ajax Pendant Jog 2 Brain

👹 Ajax Pendant Jog 2.brn -	
<u>File View</u> Commands Scroll <u>H</u> elp	
□ ☞ 🖬 🖇 + 🗕 쓰	
MOD:794 Pass Signal	Select Jog
MOD:795 No-Operation Pass Signal	Select Jog
MOD:796 Pass Signal	Select Jog
MOD:806 Pass Signal	OEMTRIG
MOD:804 Pass Signal	OEMTRIG
MOD:800 Pass Signal	OEMTRIG
MOD:810 Pass Signal	
MOD:802 Pass Signal	OEMTRIG
MOD:812 Pass Signal	OEMTRIG
MOD:813 Pass Signal	Stop File
MOD:814 Pass Signal	SingleStep
MOD:797 No-Operation Pass Signal	MPG Jog On
MOD:816 No-Operation Pass Signal	FeedHold
MOD:817 Pass Signal	CycleStart
Ready	

This brain makes most of the other jog-related keys on the Ajax control pendant function, simply passing the input values through to Mach3 as the corresponding button presses. NOTE: This brain overrides the OEM Trigger values. If you are using a control pendant, you should change your settings in the Config \rightarrow Ports and Pins \rightarrow Input Signals menu such that the OEM Trigger values are not emulated by the keyboard.

🎒 Ajax Pendant Jog 3.brn -<u>File View</u> Commands Scroll <u>H</u>elp 🗅 🚅 🔒 🤶 🕇 🗕 🚣 No-Operation No-Operation Invert EOR Invert MOD:805-Pass Signal Pass Signal Flip Signal No-Operation AND No-Operation MOD:805-Pass Signal Pass Signal MOD:805-Excl OR inp.. Flip Signal No-Operation Compare A:B MOD:801-AND inputs Pass Signal A = B Invert MOD:805-Flip Signal No-Operation MOD:801-. MOD:805-Pass Signal Invert MOD:377-MOD:805-Flip Signal < > Ready NUM

4.24 Ajax Pendant Jog 3 Brain

This brain controls the Fast/Slow button on the Ajax control pendant (the turtle / rabbit button). It also sends the state of that button to ModBus output 377, so the Ajax MPU11 knows whether it should perform a fast or slow jog.

4.25 Ajax Pendant LEDs Brain

🎒 Ajax Pendant LEDs.brn -					<
<u>File Vi</u> ew Commands Scroll <u>H</u> elp					
□ ☞ 🖬 💡 + 🗕 ┸					_
Spindle % I > 100.0000]				^
Spindle % I = 100.0000]			— MOD:773	
Spindle % I < 100.0000	 			MOD:778	
MOD:13-D Flip Signal					
MOD:13-D Pass Signal					
MOD:3-M Pass Signal	 			MOD:789	
MOD:4-M Pass Signal				MOD:790	
Jog Incr. Pass Signal		 		MOD:793	
MPG Jog Pass Signal				MOD:797	
Single Step Pass Signal]			— MOD:814	
Current Incr. I = 0.0010]			— MOD:794	
Current Incr. I = 0.0100]			— MOD:795	
Current Incr. I = 0.1000]			MOD:796	
MOD:815 Pass Signal					
MOD:816 Pass Signal	OR inputs				
<]		
Ready				NUM	//

This brain determines which of the Ajax control pendant LEDs should be lit, and which should be dark. Some LEDs are controlled by other brains, but this is where most of the simple ones are located.

4.26 Ajax Pendant Spindle 1 Brain

🎒 Ajax Pendant Spindle						
Eile View Commands Scroll						
MOD:769 Flip Si MOD:769 Pass s	gnal No-Ope Pass S Pass S Pass S Pass S Pass S Pass S Pass S Pass A Pass	ignal Pass Signal eration AND ignal	EOR Excl OR inp	Flip Signal	- MOD:769	
MOD:769 No-Op Pass S	eration Signal				— MOD:787	ŀ
< Ready					NUM	>

This brain controls the state of the Automatic/Manual spindle setting on the Ajax control pendant.

4.27 Ajax Pendant Spindle 2 Brain

This brain causes the Clockwise/Counter-Clockwise spindle setting on the Ajax control pendant to function. The setting itself is stored in ModBus output 803 – with a 0 indicating clockwise and a 1 indicating counter clockwise.

Ajax Pendant File <u>V</u> iew Comma							
MOD:768	No-Operation Pass Signal					Inc SpinSp	
MOD:773	No-Operation Pass Signal					Reset Spin	
MOD:778	No-Operation Pass Signal					- Dec SpinS	
MOD:783	No-Operation Pass Signal	AND				- Spindle On	
Spindle ON	No-Operation Pass Signal	AND inputs				opinaio on	
Spindle ON	No-Operation Pass Signal	AND	No-Operation	OR	AND		
MOD:769	No-Operation Pass Signal	AND inputs	Pass Signal				
MOD:769	Invert Flip Signal	No-Operation Pass Signal	AND	OR inputs	H	- MOD:784	
MOD:784	No-Operation Pass Signal	OR	AND inputs	-	AND inputs		
MOD:784	No-Operation Pass Signal	OR inputs					
MOD:783	Invert Flip Signal				_		
							>
eady						NUM	

4.28 Ajax Pendant Spindle 3 Brain

This brain allows the Spindle +, 100%, -, Stop and Start keys on the Ajax control pendant to function.

4.29 Add On Boards

If you have purchased a PLCADD1616 or other expansion board, the ajaxlog.txt file can assist you in determining the correct IO range to use for your particular board.

4.30 Fourth Axis Setup

If you would like to setup a fourth axis with your Ajax system, you will need to alter your settings in several different places...

First, go to the Config \rightarrow Ports and Pins menu. Select the Motor Outputs tab and mark the fourth axis (AAxis) as enabled. This will allow Mach3 to recognize your fourth axis.

Eng	ine Configur	ation Ports	& Pins					D
Po	rt Setup and Axis	s Selection M	otor Outputs Inp	ut Signals 🗍 Outp	ut Signals Enc	oder/MPG's Sp	indle Setup 🗍 Mil	l Options
	Signal	Enabled	Step Pin#	Dir Pin#	Dir LowActive	Step Low Ac	Step Port	Dir Port
	X Axis	4	2	6	x	X	1	1
	Y Axis	4	3	7	×	×	1	1
	Z Axis	4	4	8	X	×	1	1
ſ	A Axis	4	5	9	×	×	1	1
	B Axis		O	0	X	×	0	0
	⊂ A×is	X	0	0	X	×	0	0
	Spindle	X	0	0	X	×	0	0
						OK	Cano	cel <u>Apply</u>

Next, go to the Output Signals tab, and mark Enable4 as Enabled. This allows your fourth axis to get power.

Signal	Enabled	Port #	Pin Number	Active Low	<u>^</u>
Digit Trig	X	1	0	X	
Enable1	4	1	0	X	=
Enable2	4	1	0	X	
Epoble2	4	1	0	X	
Enable4	4		0	X	
enableo	-	1	0	X	
Enable6	X	1	0	X	
Output #1	X	1	0	X	
Output #2	X	1	0	X	
Output #3	X	1	0	X	
Output #4	X	1	0	X	~
F	Pins 2 - 9 , 1, 14, 16, and	117 are output pins. N	o other pin numbers sha	uld be used.	
Then, click on the Encoder/MPG's tab and set Encoder4 as Enabled – and also fill in the appropriate value for Counts/Unit. This allows your fourth axis to measure angles (or distances) accurately.

Eng	ine Configu	iration Po	orts & Pins						× I
Po	rt Setup and A	xis Selection	Motor Outputs	Input Signal	s Output Sign	als Encoder/	'MPG's Spindle	e Setup Mill Opt	ions
	Signal	Enabled	A -Port #	A-Pin #	B -Port #	B-Pin #	Counts/Unit	Velocity	
	Encoder1	4	0	0	0	0	40000.000	100.000000	
	Encoder2	4	0	0	0	0	40000.000	100.000000	
	Encoder3	4	0	0	0	0	40000.000	100.000000	
	Encoder4	4	þ	0	0	0	40000.000	100.000000	
•	MPG #1	-	0	o	0	0	4.000000	35.000000	
	MPG #2	×	0	0	0	0	1.000000	100.000000	
	MPG #3	×	0	0	0	0	1.000000	100.000000	
	,	-							
							OK	Cancel	Apply

Following that, go to the Input Signals tab. Setup OEM Trigger 7 and 8 to be emulated with the keypresses you'd like to use for jogging the fourth axis.

Eng	ine Configura	tion Ports	t: Pins					X
Po	ort Setup and Axis	Selection Mot	or Outputs Input	Signals Outpu	t Signals Enco	der/MPG's Spin	dle Setup 🗍 Mill (Options
	Signal	Enabled	Port #	Pin Number	Active Low	Emulated	HotKey	<u> </u>
	OEM Trig #3	4	1	0	X	4	38	
	OEM Trig #4	4	1	0	X	4	40	
	OEM Trig #5	4	1	0	X	4	33	
	OEM Tria #6	А	1	0	X	4	34	
	OEM Trig #7	4	0	0	X	4	45	
	OEM Trig #8	4	0	0	X	4	46	
	our mg #2	W	0	0	U		•	
	OEM Trig #10	X	0	0	X	×	0	
	OEM Trig #11	X	0	0	X	×	0	
	OEM Trig #12	X	0	0	X	×	0	
	OFM Tria #13	2	n	n	2	22	n	_
		Pins 10-13 and 1	5 are inputs. Only	these 5 pin numb	ers may be used	on this screen		
								- 1
						Automa	ited Setup of Inp	uts
						OK	Cance	el <u>A</u> pply

Next click on the Operator \rightarrow Brain Control menu and mark the Ajax Fourth Axis.brn brain as being Enabled. This brain converts the OEM trigger signals into actual jog commands on the fourth axis.

Bra	in Control			
	Loaded Brains	_		
	Ajax Continuous Jog : Ajax Continuous Jog ;	^	Enabled	
	Ajax Continuous Jog : Ajax Coolant.brn Ajax Cutoff X.brn		Reload Brain	1
	Ajax Cutoff Y.brn Ajax Cutoff Z.brn		Reload All Bro	ains I
	Ajax Enableston Ajax Fourth Axis.brn		Disable all	1
	Ajax Limit Handling.br Ajax Limit Inputs.brn Ajax Lube.brn		ViewBrain	
	Ajax MPG Axis.brn Ajax MPG Disable.brn			
	Ajax MPG Enable.brn Ajax MPG Multiplier.br Ajax Pendant Aux.brr			
	Ajax Pendant Coolant Ajax Pendant Coolant Ajax Pendant Feed.bi		Cancel	1
	Ajax Pendant Jog 1.b.	~	OK]
			L	

At this point, your fourth axis should be somewhat functional – however, the fourth axis motor may be controlled by the X axis, rather than the A axis as expected (for a DC3IOB kit and a DC1 add on board – GP4IOD users can probably ignore this step). This is because the DC3IOB/MPU11 hardware detects drives in reverse order. While it's possible to setup your machine so it works like this, it will make more sense if we remap each of the axes to control the motor we expect it to control.

To do this, use the Config \rightarrow Config Plugins \rightarrow AjaxPlugin menu, and modify the DriveNumber and EncoderNumber settings for each axis. The PlugIn Control \rightarrow Mach Ajax Plugin menu can help you determine the correct drives to use, though it will typically be 2, 3, 4, 1 (as shown below).

Aja	x Configuration									Version Information
			Aja	x Config	guration					Mach Ajax Plugin Version 1.05 Beta Revis FPGA Version 0.46
	Axis	0	1	2	3	4	5	6	7	DSP Version 1337.2
	Кр	128	128	128	128	128	128	128	128	Serial Number 323090032
	iL	32000	32000	32000	32000	32000	32000	32000	32000	Drive 01 = DC1 (Version 3)
	Kg	0	0	0	0	0	0	0	0	Drive 02 = DC3IOB (Version 7)
	Ki	1	1	1	1	1	1	1	1	Drive 03 = DC3IOB (Version 7)
	Kv1	0	0	0	0	0	0	0	0	Drive 04 = DC3IOB (Version 7) Drive 05 = None
	Kd	1280	1280	1280	1280	1280	1280	1280	1280	Drive 06 = None
	Ka	0	0	0	0	0	0	0	0	Drive 07 = None Drive 08 = None
	CountsPerRev	8000	8000	8000	8000	8000	8000	8000	8000	Drive 00 = None
	DriveNumber	2	3	4	1	0	0	0	0	Drive 10 = None
	EncoderNumber	2	3	4	1	0	0	0	0	Drive 11 = None Drive 12 = None
-		-	0		·		0	0		Drive 13 = None
	100 Fast Jog Rate	(in units	per minute)						Drive 14 = None Drive 15 = None
	10 Slow Jog Rate	e (in units	ner minut							Drive 15 = None
				1						
4	1000 Maximum Fo	llowing E	rror (in ei	icoder cou	nts)					PLC = 1.7
				1			1			
			Save & C	lose		Cancel				ОК
		-					_			

NOTE: You may also need to modify the M92 macro if you use an input other than 30 for rotary axis home.

Drive Number	Location	Description					
1	Drive Bus Channel 1	Drive types are DC3IOB, DC1, ACSingle, and OPTIC4.					
2	Drive Bus Channel 2	Other drive types may be added in the future. The drive which is on drive channel one will normally display a 1 on the					
3	Drive Bus Channel 3	LED display. Drive channel 1 gets assigned by the FPGA to					
4	Drive Bus Channel 4	the last drive on the Drive bus chain and sequential numbers are added back to the device with the fiber optic cable					
5	Drive Bus Channel 5	connected to the MPU11. A DC3IOB will take 3 drive					
6	Drive Bus Channel 6	channels, one for each axis output, and an OPTIC4 will take 4 drive channels.					
7	Drive Bus Channel 7						
8	Drive Bus Channel 8						
9	GPIO4D Drive Out 1	Implemented through outputs on the plc bus which are wri					
10	GPIO4D Drive Out 2	to at 4000hz. It is possible to have a GPIO4D connected to the PLC bus and a drive to connected to the drive bus at the					
11	GPIO4D Drive Out 3	same time.					
12	GPIO4D Drive Out 4						
13	Legacy DC 1	Legacy DC drives (DC3IO) are not compatible with the above					
14	Legacy DC 2	drive bus drives.					
15	Legacy DC 3						
16	Legacy DC 4						
Futu	Ire: Drive numbers could be e	xpanded to support other drive types such as SD1					

Drive Number Chart

Encoder Index Chart

Encoder Index	Location	Description					
1	MPU11 onboard Encoder 1	The encoder inputs that are on the MPU11. Labeled					
2	MPU11 onboard Encoder 2	Encoder 1- Encoder 6					
3	MPU11 onboard Encoder 3						
4	MPU11 onboard Encoder 4						
5	MPU11 onboard Encoder 5						
6	MPU11 onboard Encoder 6						
7	Drive Bus Channel 1 Encoder	An encoder connected to a drive bus device. An					
8	Drive Bus Channel 2 Encoder	Optic4 has 1 encoder per channel.					
9	Drive Bus Channel 3 Encoder						
10	Drive Bus Channel 4 Encoder						
11	Drive Bus Channel 5 Encoder						
12	Drive Bus Channel 6 Encoder						
13	Drive Bus Channel 7 Encoder						
14	Drive Bus Channel 8 Encoder						
15	MPU11 onboard MPG Encoder Input	MPG connector, which has no index pulse signal					

4.31 MPG Setup (MPU11 Based)

The Ajax MPU11 and Plugin have built in support for an MPG with a 5 volt differential encoder. The Ajax Plugin comes with several brains which work with a single Ajax supplied MPG (as shown on right). If you have a different MPG, the brains will work as long as you follow the MPG wiring diagram in MPU11_AND_CABLES.pdf. The brains control the axis selection, multiplier, and MPG enable/disable. They also control the LED indicator light on the MPG. It is not necessary to have the supplied brains working, as long as you can specify the axis selection and multiplier in Mach.

• **Detents**: The marks on the MPG handwheel. They provide tactile feedback and cause the encoder to stop exactly on a detent. The MPG to the right has 100 detents per revolution.

- Windup Mode: The MPU11 MPG has two modes of operation. If Windup Mode is on the MPG will move the exact number of steps that the user commanded. If Windup Mode is off, the MPG will stop short if the user cranks the MPG faster than the motor can handle. The Ajax Plugin automatically turns off Windup Mode for jog-steps greater than .01 inches or greater than .2 mm in metric mode. Windup mode is turned on for smaller jog-increments.
- **MPG Feedrate**: It is recommended that you set this value to the the highest maximum velocities for all of your axes. The MPG will try to move the motors as fast as the user eranks the hand wheel. However, it is limited by the **MPG Feedrate**, shown to the right, and the maximum velocity of the selected axis. It is also effected by the acceleration rate for the selected axis. If your MPG is moving slower than you expect, check your MPG Feedrate which is in Mach's MPG Mode window. (Press Tab from the main screen)
- Counts/Detent: The MPG needs to know how many encoder counts per detent there are. The MPG provided by Ajax has 4 encoder counts per detent. In order to change this value, go to Config → Ports and Pins in Mach3's menu bar. From here, click the Encoder/MPG's tab. The Counts per Detent are set in the Counts per Units column. If your MPG doesn't have detents, that's ok. The MPU11 needs to know how many encoder counts cause 1 jog-increment of movement (in x1 mode).
- **Enabled:** The enabled column must be checked in the Encoder/MPG's tab for the MPG to work.

5ignal	Enabled	A -Port #	A-Pin #	B -Port #	B-Pin #	Counts/Unit	Velocity	
Encoder1	4	0	0	0	0	40000.000	100.000000	
Encoder2	4	o	0	0	0	40000.000	100.000000	
Encoder3	4	0	0	0	0	40000.000	100.000000	
Encoder4	X	o	0	0	0	1.000000	100.000000	
MPG #1	4		0	0	0	4.000000	35.000000	
MPG #2	8	0	0	0	0	1.000000	100.000000	
MPG #3	X	0	0	0	0	1.000000	100.000000	

MPG Enable and Counts/Detent Configuration

NOTE: The Velocity column in this window has NO effect for the MPG row. (When using an MPU11 based MPG)

- **Multiple MPGs:** The MPU11 supports up to 3 MPG's which can be connected to any available encoder input.
- **MPG Encoder Inputs**: The MPG encoder indexes tell the MPU11 which encoder to read as an mpg. The MPG header is the default encoder input for the first MPG. This can be changed in the mach_ajax.xml configuration file. You can also specify encoder inputs for the other two mpgs. See the Encoder Index chart above in section 4.30.

5 Diagnostics and Tuning

The Mach Ajax Plugin has several features to assist you in diagnosing and resolving problems you may encounter with your machine.

5.1 Axis Plot

To perform an axis plot, the Ajax Plot Gather brain must be enabled. This brain will ask the Ajax MPU11 to record its position, velocity, acceleration and error values for a 2 second period of time, for a given axis. These values are then sent to your computer where they are displayed in an graphical form. Input 1 (X axis), Input 2 (Y axis) and Input 3 (Z axis) are used to select which axis to plot, and are by default bound to the F1, F2, and F3 keys. Each plot will also be saved to your computer's hard drive for later reference (C:\Mach3\Ajax directory by default).

mSecs	The time at which the sample was taken in milliseconds
AbsError	The absolute error, which is the difference (in encoder counts) between where the machine should be and where it actually is.
SumAbsError	The sum of absolute error, which is a running total of the absolute error value. This number is often quite large, so a Y Scaling factor of 0.01 can be useful.
AbsVel	The absolute velocity, as measured in encoder counts per millisecond. This value tells you how fast your motor is actually spinning at any given time.
ExpVel	The expected velocity, as measured in encoder counts per millisecond. This value tells you how fast your motor is trying to spin.
AbsPos	The absolute position, as measured in encoder counts. This value tells you where the machine is at any given time.
ExpPos	The expected position, as measured in encoder counts. This value tells you where the machine is supposed to be at any given time.

5.2 Ajax Configuration Utility

The Mach Ajax Plugin comes with its own configuration utility that allows the setup of several additional parameters specific to your servo motors – or specific to the Ajax MPU11. To access this utility, select Config \rightarrow Config Plugins from Mach3's menu bar, then click the yellow Config square.

Ajax	x Configuration								
			Ajax Co	nfigurat	ion				
	Axis	0	1	2	3	4	5	6	7
•	Кр	0.1290	0.1290	0.1290	0.3906	0.3906	0.3906	0.0011	0.0011.
	iL	12800	12800	12800	32000	32000	32000	32000	32000
	Kg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000.
	Ki	0.0030			0.0030			0.0000	
	Kv1	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	
	Kd	0.7813	0.7813	0.7813	0.4882	0.4882	0.4882	0.0001	0.0001.
	Ka	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000.
	CountsPerRev	8000	8000	8000	8000	8000	8000	8000	8000
	DriveNumber	1	2	3	4 6 1 3 0.0000 0.0000.		5	0	0
	EncoderNumber TachVoltsPer1000RPM	4 0.0000	5 0.0000	6 0.0000			2 0.0000	0 0.0000	0 0.0000.
	Backlash	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000.
	BacklashAccelMultiplie		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000.
	Duckidon Accentratipite	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000.
200	Fast Jog Rate (in un	its per mit	nute)	200	Slow J	og Rate (i	n units pe	r minute)	
4000	Max Following Erro	r (4000 is	good)	4	Move To Index Pulse Speed (4 is good)				
200	Command Buffer (m	illisecond	s)	300	Comm	unication	Time Out	(milliseco	onds)
1	Spindle Low Bit (0 t	o Autodete	ect)	2	Spindle	High Bit	(0 to Auto	odetect)	
90	High Power Percent	(90 is goo	d)	2000	High P	ower Tim	e (millisec	onds)	
27	Probe Input (481 is a	onboard)		0	Probe	Input Stat	e (O is nor	mally clos	ed)
1	Stop on Encoder Err	or (1 is ye	es, 0 is no)	1	Messa	ge on Enc	oder Eiro	r (1 is yes	, 0 is no)
15	Onboard MPG 1							Save & Close	
0	Onboard MPG 2								
0	Onboard MPG 3							Canc	el

NOTE: You may need to install Microsoft's .NET framework for this configuration menu to function.

Kp, **iL**, **Kg**, **Ki**, **Kv1**, **Kd**, **and Ka** are used to calculate the amount of power each motor should receive, in order for the machine to follow its intended path as best as possible. The default values will probably be pretty close to what you want for your motors, but the steps below will help you tweak the numbers to reduce errors and oscillations. In general, you should not alter Ki, Ka, iL or Kg.

CountsPerRev is the number of encoder counts in a single rotation of the motor

Drive Number is used to determine which motor should get power when an axis is commanded to move. In most cases, these should be set to 0 - which will cause the MPU11 to autodetect.

Encoder Number is used to determine which encoder should be used to determine the actual position of each axis. Again, these should probably be set to 0 for autodetection.

Backlash is used to counteract mechanical play in your machine (where the motor moves slightly before the table itself)

Backlash Accel Multiplier is used to determine how quickly backlash is taken up, and the default value of 0.1 should work well in most cases. Unless you have access to a sophisticated testing system, you probably shouldn't change this.

Fast Jog Rate and **Slow Jog Rate** are used for continuous jogging. Which is in use, depends on the state of ModBus output 377.

Max Following Error is used to trigger a critical error if the Ajax MPU11 is missing its intended position by too great a distance, for too long a time period. The length of that time period is equal to the amount of time it takes for a motor to accelerate from a stop to full speed.

Move To Index Pulse Speed is 4. Leave it that way. It controls how quickly the MPU11 performs the most critical portion of the homing sequence, and modifying it could cause the MPU11 to home inconsistently.

Command Buffer is the number of milliseconds that the MPU11 will hold movement commands before executing them. If this number is too low, the MPU11 is more prone to communication errors and vector starvation. As the number gets higher and higher, there will be a longer and longer delay before the MPU11 responds.

Communication Time Out determines how long the Ajax plugin can go without hearing from the MPU11, before entering an EStop state.

Spindle Low Bit and **Spindle High Bit** are used to tell the plugin where it should write the spindle speed value. These are usually set to 0 to allow the MPU11 to autodetect.

High Power Percent and **High Power Time** are used to cause an EStop if any single motor is being driven too hard for too long, in order to prevent damage to the motors due to overheating. The default values should work well.

Probe Input and **Probe Input State** are used when doing a G31 probing movement to determine when the probe has tripped.

Stop on Encoder Error and **Message on Encoder Error** should both be set to 1. However, some encoders may constantly trigger an encoder error if the are under-voltage, despite working well otherwise. In that case, these values can be used to suppress the encoder error – however doing so could cause a dangerous situation if an encoder ever becomes disconnected.

Onboard MPG 1, 2 and 3 are used to specify which encoders control the MPU11's hardware MPGs (handwheels).

5.3 Preliminary Motor Tuning

Go to Mach3's Config \rightarrow Motor Tuning menu, and set the "Steps Per" value (usually the same as the Counts/Unit setting from the Encoder/MPG tab) for each axis. Then click Save Axis Settings and repeat for each axis that you intend to use.

At this point, leave Velocity at the default of 120 inches per minute and Acceleration at 10 inches per second per second. The "Step Pulse" and "Dir Pulse" are not used by the Mach Ajax plugin at all.

5.4 Initial Positioning

Position your machine such that the tool has ample clearance on all sides (centered on the table and z raised midway). Zero the position at this point. This will help prevent damage to your machine in the following instructions, and you should return to this position after each tuning movement. Also be sure to keep a hand on EStop, as heavy oscillations could cause damage.

Another note – when doing these tuning movements

on the Z axis, do the movement away from the table and return to your initial position with a slow movement. That will help prevent running the tool into the table.

5.5 Tuning Kp

Kp is the first value you should adjust, and it should range from 0.2 to 2.34. From your initial location, perform a 1 inch movement at 120 inches per minute (ie "G1 X1.0 F120"), and generate a plot after the movement has finished (Press F1).

When looking at the plot, hide all lines except AbsError, AbsVel and ExpVel – then click AutoZoom to fit the plot to the screen.

If Kp is too high, the motor will run ahead of where it should be from the start of the move. If your plot looks like this sample below (where AbsError dips at the start of a move), your Kp should be reduced by 0.05 and the test should be run again from the initial position (also press the Reset button in Mach3 a few times to make sure the new value is taken).

If Kp is too low, the motor will trail behind of where it should be. If your plot looks like the plot below (with AbsError rising at the start of the move), your Kp should be increased by 0.05 and the test repeated (from the initial location).

5.6 Tuning Kd

Kd is the next value you should adjust, and it should range from 0.2 to 1.5. Return to your center point and perform a 1 inch movement at 120 inches per minute, and generate a plot.

Again, hide all lines except AbsError, AbsVel and ExpVel.

If Kd is too low, you will get low frequency oscillations, primarily at the end of the move. If your plot looks similar to the one below, try increasing Kd by 0.05 and running the test again.

If Kd is too high, you will get a high frequency oscillation resulting in instability and motor whining. If your motor whines loudly, hit EStop immediately and reduce Kd by 0.05. Do not perform a movement if your motor is whining – as the small initial error that causes the whining will quickly build into a larger and larger error, causing a larger and larger oscillation (your machine will shake violently).

5.7 Tuning Kv1

Kv1 is used for making long term adjustments, and its effects are most noticeable on the sum of absolute error. Common values for Kv1 are 7.8 to 15.6 on the X axis, 9.4 - 17.2 on the Y axis (higher because it carries the weight of the X) and 2.3 - 7.8 on the Z axis.

Return to your center point and perform a 1 inch movement at 120 inches per minute, and generate a plot. This time, hide all lines except SumAbsError, AbsVel and ExpVel. You may also want to scale SumAbsError by 0.01 so it fits on your screen better.

If Kv1 is too low, the plot will look something like this. Try increasing Kv1 by 3 and running the test again.

If Kv1 is too high, the plot will look something like this. Try decreasing Kv1 by 3 and running the test again.

5.8 Adjusting Kg

In general, you should not have to adjust Kg. It is the Gravity constant, and is used to counteract an unbalanced axis. Typical ranges for Kg are -4 to 4 on the X and Y axes and -8 to 8 on the Z axis.

Situations where a Kg value may be needed are as follow ...

- •A bed mill with an incorrect weight on the counter balance.
- •A loose gib.
- •A failing support bearing.

5.9 Adjusting Maximum Velocity

At this point, your motor should be moving with very little error – and now it is time to determine the maximum velocity of the motor. Return to Mach3's Config \rightarrow Motor Tuning menu, and increase the velocity by 50 inches per minute (this velocity setting determines the maximum feedrate your motor will attain). Remember to Save the Axis settings as well.

Return to your initial position and run an 4 inch move (make sure you have clearance) at the new feedrate (ie "G1 X4.0 F170"). Plot the result and ensure that the actual velocity and expected velocities are very closely matched (like the image below).

If your plot is triangle shaped (with no flat area on the top), your motor did not attain the maximum velocity you set – but only because the distance you moved was too short. Increase the length of your movement and try the movement again (make sure there's ample clearance so the machine doesn't crash into itself).

Repeat this process until the actual velocity fails to keep up with the expected velocity (like one of the images below). This may also cause a position error. Reduce your velocity to the last known good value.

The following formula may also help – but stay 10-20% below the actual maximum attained. VelocityInchesPerMinute = AbsVel * 1000 * 60 / EncoderCountsPerInch

5.10 Adjusting Acceleration

Now that the motor is reaching its maximum velocity, we can adjust the rate of acceleration. Return to Mach3's Config \rightarrow Motor Tuning menu, and increase the acceleration by 2 inches per second per second, then click the Save Axis Settings button.

Now, return to your initial position and run another test movement (again make sure you have adequate clearance). The length of the movement should be sufficient for the motor to reach its maximum velocity (as in the previous step) – and should look something like the plot below

As you gradually increase the acceleration rate, the plot will look more and more like the following image. Notice the Absolute Error values at the start and end of the movement – this tells you how many encoder counts the tool is off its desired position. If this value becomes too great, you may wish to back the acceleration down a bit. (In the image, we are off by 57 counts maximum – at 40,000 counts per inch, which translates into 0.001425 inches which may or may not be acceptable)

You will definitely want to reduce the acceleration rate if the absolute velocity fails to keep pace with the expected velocity, or if it overshoots. The following image shows both of these conditions (you may need to zoom in to see this – shift and the right mouse button will allow a non-proportional zoom, which may also be helpful).

5.11 Drag Plot Macro

Typing M4321 on Mach3's MDI line will cause the Drag Plot Macro to run. This macro can help you visualize the amount of friction your machine experiences as it moves between the soft travel limits for any axis.

Before running this macro, setup your Soft Travel limits for each axis (in Config \rightarrow Homing / Limits).

In general, if the green lines are outside of the red box (and all other settings are correct for the motor), the drag is excessive for that axis. It can also help you determine where along its track your machine is binding. The image below shows a typical drag plot, with acceptable levels of drag throughout the course of the machine's movement on the X axis.

The next image shows a plot with heavy resistance (two men pushing against the table at three different points), as the machine made its movement. If the cause was unknown, a plot like this would indicate major trouble spots at two spots along the axis of travel (-3 and -2), and a minor trouble spot (at 2.5).

■ Disting Program Drag Rick-26 7.01 ■ Position ■ mSecs ■ ErrorRick ■ ErrorSum	0090911131 -11292.34 5.00 40.00 8000.00 -1034.00	10000 9000 8000	www.	www.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	
File	Data	Toggles	Info		Zoom In	Zoom Out	AutoZoom	
F1	F2	F3	F4		F7	F8	F9	

The image below shows a drag plot for an unbalanced Z axis.

Plotting Program								
DragPlot2-20 4.22 ■ mSecs ■ mSecs ■ ErrorSum	-15111.18	12000 11000 10000 9000		~~~~~~	 ^^^/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		.00.00	-0.00	1.00	2.00		.00	4.00
File	Data	Toggles	Info		Zoom In	Zoom Out	AutoZoom	
F1	F2	F3	F4		F7	F8	F9	

The next image shows an example drag plot with all around too much drag, which could be due to inadequate lubrication, chips and debris, rust, or tight gibs.

 Plotting Program DraqPlotX-20 8.27 Position 	090911115 -12696.63	12000						
Prosition mSecs ⊐ crrothax ⊇ crrothax ⊇ crrotsum	5.00 16.00 9000,00 -1034.00	10000		****				
File	Data	Toggles	Info		Zoom	Zoom	AutoZoom	
F1	F2	F3	F4		In F7	Out F8	F9	

The next example shows a drag plot of an axis that has a misaligned ball screw. The axis is tight near the ends of travel since the ballscrew is not concentric with the support bearings.

The next example shows a drag plot of a stick-slip type of action, which could be the result of inadequate lubrication, rust, dirt/debris on the way, or an incorrectly installed gib. If the axis is controlled with a pulley system, it could also be off center.

5.12 Backlash Compensation

When a motor is turning one direction – then reverses and goes the other direction, your machine may hesitate slightly before moving in that opposite direction. This is a normal occurrence caused by looseness or wear, and is called backlash.

If you measure the amount of backlash, the Ajax MPU11 can be instructed to compensate for it. Use the Ajax Configuration Utility to enter the values you measured (Config \rightarrow Config Plugins \rightarrow yellow Config square). Enter the amount of backlash on the Backlash row. The BacklashAccelMultiplier row is used to determine how quickly the backlash should be taken up – a value of 0.1 is usually sufficient (meaning that backlash will be taken up at one tenth the maximum acceleration rate of that axis).

NOTE: It is required that the machine is rehomed after changing Backlash Compensation.

🖶 Ajax Coi	nfiguration								
	Ajax Configuration								
Ax	kis	0	1	2	3	4	5	6	7
► Kp	D	0.1290	0.1290	0.1290	0.3906	0.3906	0.3906	0.0011	0.0011
iL		12800	12800	12800	32000	32000	32000	32000	32000
Kg	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ki		0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0000
Kv	/1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ko	t	0.7813	0.7813	0.7813	0.4882	0.4882	0.4882	0.0001	0.0001
Ka		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	ountsPerRev	8000	8000	8000	8000	8000	8000	8000	8000
	riveNumber	1	2	3	4	6	5	0	0
	ncoderNumber	4	5	6	1	3	2	0	0
	achVoltsPer1000BPM		0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000
	acklash	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ba	acklashAccelMultiplier	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
200	Fast Jog Rate (in uni	te nor mir	uuto)	200	Slow I	og Rate (i	n unite no	r minuto)	
4000		- -		4		- · ·			- 1)
	Max Following Error		~ ^					ed (4 is go	- C
200	Command Buffer (m	illiseconds	5)	300	Comm	unication	Time Out	(milliseco	onds)
1	Spindle Low Bit (0 to	Autodete	ect)	2	Spindle High Bit (0 to Autodetect)				
90	High Power Percent	(90 is goo	d)	2000	2000 High Power Time (milliseconds)				
27	Probe Input (481 is onboard)			0	Probe Input State (0 is normally closed)				
1	Stop on Encoder Error (1 is yes, 0 is no)			1	Message on Encoder Error (1 is yes, 0 is no)			0 is no)	
15	Onboard MPG 1								
0	Onboard MPG 2						Save & Close		
0	Onboard MPG 3						Cancel		

6 Mach3 Operation

This section is intended as a brief overview of how to operate Mach3 with the MachAjax Plugin. Please refer to the full Mach3 user's manual for more detailed instructions.

6.1 Homing

Homing can be performed by typing "M92 P#" on Mach3's MDI line. This will cause the axis specified by the # sign (1 for X, 2 for Y, 3 for Z) to do a positive homing movement until it hits the limit switch, then it will back off until it reaches the index pulse of the encoder.

Multiple axes can be homed simultaneously by specifying Q and R values as well. For example, "M92 P1 Q2 R3" will cause the X, Y and Z axes to home in the positive direction. Homing can be performed in the negative direction by adding 10 to the numbers – for example "M92 P11 Q12 R13". The M92.m1s file in the Macros directory is the script that handles this behavior.

6.2 Jogging

By default jogging can be performed using the Left and Right cursor keys for X movement, the Up and Down cursor keys for Y movement, and the Page Up and Page Down keys for Z movement. These can be reconfigured by changing OEM Trigger 1 through 6 in the Input Signals tab of the Config \rightarrow Ports and Pins menu, or by creating a custom brain to set the appropriate values.

Continuous jogging is performed at the slow jog rate specified in the Ajax Configuration Utility.

6.3 Running a Job

The Load G-Code ton will allow you to load a text file that contains G-Code movements to control your machine. Before running the job, read through the code so you know what size and type of tool to use and where to set your part zeroes. Check the ToolPath screen in Mach3 to verify that your Program Limits are acceptable (upper right hand corner). Also be wary of any G54, G55, G56, G57, G58 and G59 codes that may be present (an unexpected coordinate system change can ruin your day).

When starting out, set the Feed Rate Override to a low percentage, so you have time to react if something unexpected does happen. Cutting in the air is also a good idea.

When you're all ready, the Cycle Start button will start the job running.

6.4 A Note About Feed Hold

As of this time, Feed Hold does not work perfectly with the Mach Ajax Plugin. Specifically, jogging and MDI commands should not be used when Feed Hold is active as unintentional or delayed motion may occur.

6.5 Rounded Corners

Mach3 can either operate in Constant Velocity mode (CV mode) or Exact Stop mode. CV mode is enabled by default, and has the advantage of stringing movements together into one long continuous motion – keeping the specified feedrate as best as possible. Exact Stop mode causes the machine to stop motion after each G Code command is issued.

CV mode has a tendency to cause your machine to round tight corners (an effect which is more pronounced at higher feedrates). The images below show a box shaped movement on the left, and the actual path taken by the machine on the right.

In order to combat that tendency of CV mode and to give you greater control over your machine's behavior, Mach3's Config \rightarrow General Config menu can be used to set several additional parameters (in the CV Control section). "Stop CV on angles >" is set to 70 by default, and will cause an exact stop in the case shown above (so the final cut comes out as a square) – a hexagon (with 60

CV Control	
CV Dist Tolerance 0.01	Units
G100 Adaptive NurbsCV	
✓ Stop CV on angles > 70	Degrees

degree angles) would still exhibit this rounding behavior, unless the setting was further reduced.

Another option that works well is the CV Dist Tolerance option, which limits the maximum amount of rounding that occurs to the value specified.

6.6 Probing and Digitization

The Ajax MPU11 supports high speed probing through the use of the G31 command – however the current implementation differs slightly from the normal Mach3 implementation. In particular, the point of contact is written to OEM DROs 2000 through 2007, and OEM DRO 1999 is used to indicate whether or not a contact has occurred. Also, when using G31 within a macro to digitize an object, all output should be explicitly written to a file (rather than relying on the OpenDigFile and CloseDigFile functions) – the macro should also wait until the G31 is complete before issuing any further commands.

The G31 operates much like a G1, and moves at the current feedrate to the specified position. What feedrate to use will depend on the probe you are using, but in general, slower probing will give more accurate results. If the feedrate is too high, it is possible to damage the probe or part – since the machine will need time to decelerate after registering a probe hit.

The M931 macro (which is provided with your kit) shows a simple example of how to perform a single point probing movement with the Ajax hardware. This example could be improved upon in several ways – however it shows the basic techniques which should be employed.

WARNING

Do not turn on the spindle when a probe is inserted – doing so can cause the probe to fly out and embed itself in a nearby wall/person.

Single Point	Probe					
Macro M931 performs a single point probing movement. Before using this macro to probe a surface, you should ensure that your probe works in air – where you won't accidentally cause the machine to crash.						
indicate, at t	nue, the machine will move to the XYZ position you the feedrate specified. It should stop when the probe trips, nt of contact will be displayed.					
Macro Copy	rright (c) 2010, Aja×CNC					
Go To X:	0					
Go To Y:	0					
Go To Z:	0					
Feedrate:	20					
Cancel Probe						

In order to use the G31 probing command, you will first need to attach your probe to one of the hardware inputs. The Ajax MPU11 has a high speed probe input channel (input 481) that allows the probe to be sampled at 4000 times per second (which yields greater accuracy), however any normal input on your DC3IOB / GPIO4D can be used.

Next, use the Ajax Configuration Utility (Config \rightarrow Config Plugins \rightarrow yellow Config square) to tell the Ajax Plugin which input the Probe is using, and whether the probe is normally open or normally closed.

🖶 Ajax Co	nfiguration								
	Ajax Configuration								
A	xis	0	1	2	3	4	5	6	7
► K	р	0.1290	0.1290	0.1290	0.3906	0.3906	0.3906	0.0011	0.0011
iL		12800	12800	12800	32000	32000	32000	32000	32000
K	g	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
K	i	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0000
K	v1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
K	d	0.7813	0.7813	0.7813	0.4882	0.4882	0.4882	0.0001	0.0001
K	a	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
С	ountsPerRev	8000	8000	8000	8000	8000	8000	8000	8000
D	riveNumber	1	2	3	4	6	5	0	0
E	ncoderNumber	4	5	6	1	3	2	0	0
Т	achVoltsPer1000RPM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
В	acklash	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
В	BacklashAccelMultiplier		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
200	Fast Jog Rate (in uni	its per mir	ute)	200	Slow Jog Rate (in units per minute)				
4000	Max Following Error	(4000 is	good)	4	Move To Index Pulse Speed (4 is good)			od)	
200	Command Buffer (m	illiseconds	s)	300	Communication Time Out (milliseconds)			nds)	
1	Spindle Low Bit (0 to	Autodete	ect)	2	Spindle High Bit (0 to Autodetect)				
90	High Power Percent	(90 is goo	d)	2000	High Power Time (milliseconds)				
27					Probe Input State (0 is normally closed)				
11	Stop on Encoder Err	or (1 1s ye	s, U 15 no)	11	Messa	ge on Enc	oder Eiro	r (1 15 yes,	U 15 NO)
15	Onboard MPG 1					Same R.	Class		
0	Onboard MPG 2					Close			
0	Onboard MPG 3 Cancel					el			

Make sure you test the G31 command in air to ensure that your probe works correctly and consistently.

7 Appendices

7.1 Input Reference

The values in this section can be read by Brains by using ModBus inputs.

by using Moubus inputs.
Input 351
Input 352
Input 353
Input 354
Input 355
Input 356
Input 357
Input 358
Input 359
Input 361
Input 362
Input 363
Input 364
Input 365
Input 366
Input 367 Homing: (reset when index pulse move starts set when index pulse move is finished)
Input 368
Input 369 (set when the mpull detects a probe trip, Reset on the Rising edge of the Enable Probe Detection bit)
481-512
Input 750 (set to 1 if the axis is reversed, so the continuous jogging brains can determine which direction to move)
Input 751
Input 752
Input 753
Input 754

Drive Type bits: DC3IOB = 0, GP4IOD = 1

7.2 Output Reference

Most of the values in this section can be written to by Brains by using ModBus outputs. Some (such as Output 380) are controlled directly by the Mach Ajax Plugin.

Axis Enable 1	Output 351
Axis Enable 2	Output 352
Axis Enable 3	Output 353
Axis Enable 4	Output 353 Output 354
Axis Enable 5	
Axis Enable 5 Axis Enable 6	Output 355
	Output 356
Axis Enable 7	Output 357
Axis Enable 8	Output 358
Master Enable	Output 351 or Output 352 or Output 353 or Output 354 or Output 355 or Output 356 or Output 357 or Output 358
Start Plot Dump (Ethernet debug packets)	Output 359
Clear Stop Reason	Output 360
Axis 1 Jog Positive	Output 361
Axis 1 Jog Negative	Output 362
Axis 2 Jog Positive	Output 363
Axis 2 Jog Negative	Output 364
Axis 3 Jog Positive	Output 365
Axis 3 Jog Negative	Output 366
Axis 4 Jog Positive	Output 367
Axis 4 Jog Negative	Output 368
Axis 5 Jog Positive	Output 369
Axis 5 Jog Negative	Output 370
Axis 6 Jog Positive	Output 371
Axis 6 Jog Negative	Output 372
Axis 7 Jog Positive	Output 373
Axis 7 Jog Negative	Output 374
Axis 8 Jog Positive	Output 375
Axis 8 Jog Negative	Output 376
Fast Jog	Output 377 low = slow jog, high = fast jog
Decel Bit	Output 378 cause mpull to decel and purge buffers until Clear Stall Error is set.
Enable Jogging	Output 380
Move Axis 1 to index pulse positive	Output 381

Move Axis 1 to index pulse negative	Output 382
Move Axis 2 to index pulse positive	Output 383
Move Axis 2 to index pulse negative	Output 384
Move Axis 3 to index pulse positive	Output 385
Move Axis 3 to index pulse negative	Output 386
Move Axis 4 to index pulse positive	Output 387
Move Axis 4 to index pulse negative	Output 388
Move Axis 5 to index pulse positive	Output 389
Move Axis 5 to index pulse negative	Output 390
Move Axis 6 to index pulse positive	Output 391
Move Axis 6 to index pulse negative	Output 392
Move Axis 7 to index pulse positive	Output 393
Move Axis 7 to index pulse negative	Output 394
Move Axis 8 to index pulse positive	Output 395
Move Axis 8 to index pulse negative	Output 396
Set Axis 1 Home	Output 397
Set Axis 2 Home	Output 398
Set Axis 3 Home	Output 399
Set Axis 4 Home	Output 400
Set Axis 5 Home	Output 401
Set Axis 6 Home	Output 402
Set Axis 7 Home	Output 403
Set Axis 8 Home	Output 404
Gather/Drag Axis Bit 0	Output 405 These 3 bits define the axis number (0-7)
Gather/Drag Axis Bit 1	Output 406 for the gather.
Gather/Drag Axis Bit 2	Output 407 Bit 0 is the least significant bit
Start Gather Dump	Output 408 (starts a Binary dump of data)
Allow jogging even if MDI window has focus (special for homing and other macros)	Output 440
Ignore Following and Full Power w/o Motion Errors. This also causes the Ajax Limit Handling brain to ignore limit switches.	Output 441
Enable Probe Detection / Position Event Capture	Output 442 (Plugin Resets after receiving captured positions)
Local Outputs (Mpull Onboard Outputs)	481-512
Jog Panel Outputs	768-1023

7.3 Ajax Mpu11 On-board I/O Reference

The Ajax Mpu11 board has built in inputs and outputs which are mapped to the following ModBus I/O. The first four inputs are probing inputs which are connected via the probe connector. The MPG I/O are connected via the mpg encoder connector. Any I/O not shown in this chart is unimplemented.

	Input Specification	l	Input Loca	tion
ModBus Input Number	Function	Туре	Connector	Pin
481	Mechanical Probe	12VDC Opto	H3	6
482	DSP Probe	12VDC Opto	H3	4
483	Probe Detect	12VDC Opto	H3	8
484	Probe Auxiliary	12VDC Opto	H3	10
485	MPG x1	5VDC	H4	9
486	MPG x10	5VDC	H4	11
487	MPG x100	5VDC	H4	13
488	MPG Axis 1	5VDC	H4	4
489	MPG Axis 2	5VDC	H4	6
490	MPG Axis 3	5VDC	H4	8
491	MPG Axis 4	5VDC	H4	10
492	MPG Axis 5	5VDC	H4	12
493	MPG Axis 6	5VDC	H4	14
494	MPG Axis 7	5VDC	H4	16
495	MPG Axis 8	5VDC	H4	18
496	MPG Aux 1	5VDC	H4	15
497	MPG Aux 2	5VDC	H4	20
498	MPG Aux 3	5VDC	H4	22

	Output Specification	Output Location		
ModBus Output Number	Function	Туре	Connector	Pin
481	MPG LED	Open Collector	H4	17
482	MPG Aux 1	Open Collector	H4	19
483	MPG Aux 2	Open Collector	H4	21

*Open Collector outputs are pulled up to 5V

*5 VDC inputs are not isolated

7.4 Debounce Settings

Starting in version 1.10, All inputs, on all PLC bus devices and add on boards, the jog pendent, and the on-board Ajax Mpu11 inputs have a 1.5 millisecond debounce time, except the DSP Probe input, input 482. Input 482 has a debounce time of 0 milliseconds. In other words, there is no debounce time for input 482.

7.5 Control Pendant Reference

The control pendant offered by Ajax CNC interfaces with Mach3 through the following ModBus Input and Output values.

7(9	7(0	770	771	772
768 Spindle+	769 Spindle	770 Aux 1	771 Aux 2	772 Aux 3
Spinule+	Auto/Man	Aux I	Aux 2	Aux 5
773	774	775	776	777
Spindle 100%	Spindle CW	Aux 4	Aux 5	Aux 6
778	779	780	781	782
Spindle -	Spindle CCW	Aux 7	Aux 8	Aux 9
783 Spindle Stop	784 Spindle Start	785	786	787
788 Coolant Auto/Man	789 Flood	790 Mist	791	792
793	794	795	796	797
Incr/Cont	x1	x10	x100	MPG
798	799	800	801	802
4 th +		Y +		Z +
803	804 X -	805 Slow/Fast	806 X +	807
808 4 th -	809	810 Y -	811	812 Z -
813 Cruele	814 Single	815 Taal Chash	816	817 Guele Stort
Cycle Cancel	Single Block	Tool Check	Feed Hold	Cycle Start

NOTE: The default brains for the control pendant use outputs 785, 786, 787, 799, 801, 803 and 809 to hold temporary state values.