PLC / Embedded computer

cuBLOC

User Manual
Version 2.0.0

“Everything for Embedded Control”

COMFILE

TECHNOLOGY
Comfile Technology Inc.
www.comfiletech.com

Manual Version 2.0.0 (revised March 2006)
Copyright 1996,2006 Comfile Technology©

C U B Lo C souTd 1 S 247 VIN (55V~12Vinput)
SINI:ZI .23:|VSS
Core Module e b 2 Res
Vvss[] 4 21 vDD
111
- ss_pPol s 20 1 P15_HCNTO
inout -
(Input only)SCK_P10 6 19 P14_HCNT1
MOSI_P2[] 7 18 [P13
MISO_P3[] 8 171 P12
Pal] 9 16 [1 P11_TX(CH1)
PWMO_P5[] 10 15[P10_RX(CH1)
PWMI_P6] 11 14 [0 P9_SDA(CUNET)
PWM2_P7 0 12 13[0 P8_SCL(CUNET)
S
souT| 1® @17 VDD TX1 33 @ @ 49 | TTLTX1
sin| 2@ @18 vss RX1 34@ @ 50 | TTLRX1
ATN| 3@ @19 RES AVDD 35@ @ 51 | AVREF
vss | 4@ @20 N/C NC @ 52 | P48
ss Po| 5@ @21 P16 ADCO_P24 @ 53 | P31_ADCT7
(Input_only)SCK_P1 | 6@ @22 P17 ADC1_P25 @ 54 | P30_ADC6
mosip2| 7@ @23 p1s ADC2_P26 @ 55 | P29_ADC5
Mmiso P3| 6@ @24 P1o_pwms ADC3_P27 @ 56 | P28_ADC4
P4| 9@ @25 P20_PWM4_INTO P47 ® 57 | P32
PWMO_P5 [10@ @ 26 P21_PWM5_INT1 P46 @ 58 | P33
PWM1_P6 |11@® @27 P22_INT2 P45 @ 59 [P34
PwWM2_P7 [12@ @28 P23_INT3 P44 @ 60| P35
(CUNET)SCL_P8 |13@® @29 P15_HCNTO P43 61 | P36
(CUNET)SDA_P9 |14@® @30 P14_HCNT1 P42 @ 62 | P37
P10 |15@ @31 P13 P41 @ 63 | P38
P11 |16@ @32 P12 P40 @ 64 | P39
w
vdd THTX1
Vss THRX1
RES CB290 AVref
VBB Vss
P8 /ADO
P9 /AD1
P10 /AD2
P11/AD3
P12 /AD4
P13 /AD5
P14 /AD6 &
P15 /AD7
P64 gdg
P65 a0 0
P66 Lo Ng
P67 a0 o oo
P68 =l o<
P70 (XX (X)
P63 200 @ 40 P71 seeoe LY ¥ (X P47 60 @ ® 80 P55
DO~ 0O = e ~ o
20> > 50000 So
Oro—NmO~® ©r~
RRY YRR PR
T w0 - N
== = H
== 33
oo I T

Warranty

Comfile Technology provides 1 Year warranty on its products against defects in
materials and workmanship. If you discover a defect, Comfile Technology will, at its
option, repair, replace, or refund the purchase price. Simply return the product with a
description of the problem and a copy of your invoice (if you do not have your invoice,
please include your name and telephone number).

This warranty does not apply if the product has been modified or damaged by accident,
abuse, or misuse.

14-Day Money-Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your
needs, you may return it for a refund. Comfile Technology will refund the purchase
price of the product, excluding shipping/handling costs. This does not apply if the
product has been altered or damaged.

Copyright & Trademarks

Copyright © 2005 by Comfile Technology Inc. All rights reserved. CUBLOC is a
trademark of Comfile Technology Inc. WINDOWS is a trademark of Microsoft
Corporation. XPORT is trademark of Lantronix inc. Other trademarks are of their
respective companies.

Notice

This Data Book may be changed and updated without notice. For the addition of new
features, information can be updated without notice. Comfile Technology Inc. is not
responsible for any actions taken outside the explanation of this data book. This
product is protected by patents across the world. You may not change, copy,
reproduce, or translate without the consent of Comfile Technology Inc.

Disclaimer of Liability

Comfile Technology Inc. is not responsible for special, incidental, or consequential
damages resulting from any breach of warranty, or under any legal theory, including
lost profits, downtime, goodwill, damage to or replacement of equipment or property,
and costs or recovering, reprogramming, or reproducing any data stored in or use with
Comfile Technology products.

Preface

Comfile Technology has been developing PLC and BASIC controllers since
1997. With our past knowledge of this field, we are giving you a brand new
product that is more powerful, flexible, and has the best features of both
BASIC and PLC controllers embedded.

After experiences developing and selling TinyPLC and PicBASIC, which are
chip based PLCs and BASIC controllers, we have been able to improve our
engineering efforts every year. CUBLOC is able to adapt to the user’s
strengths, whether that be BASIC or LADDER. Unlike other products, you
can simply use CUBLOC as a BASIC controller or as a PLC controller.

LADDER LOGIC, which is the traditional way of programming PLCs for its
outstanding control sequence, is neither sufficient nor easy to use for
graphic interface and other modern technology that require complex
programming. In comparison, the BASIC language proves to be simple yet
easy to implement those modern devices.

CUBLOC is able to handle both BASIC and LADDER LOGIC through on-chip
multi-tasking. By sharing memory data, it's able to integrate both BASIC
and LADDER efficiently and become a new type of controller by itself.

“CUBLOC" is created for beginners in mind. It's basic purpose if to cut
design time for those who are just entering the field of microcontrollers,
engineers from other backgrounds such as Chemical or Mechanical, and
anyone who would like to make something that they envision quickly and
get a head start on their competitors.

With our Plug-N-Play displays, development boards, and relay boards, you
will be able to put something together in matter or hours, instead of months.

Comfile Technology, Inc.

Notice

The Start Kit or Industrial Kit you receive comes with the latest version of
Cubloc Studio.

Please be aware that the software may be upgraded often.

Please check www.comfiletech.com to download the latest version of
Cubloc Studio.

Please do Setup->Firmware Download after installing new version of
Cubloc Studio as firmware of the modules are upgraded along with our
software.

Please check www.comfiletech.com often for latest Manual.

Please make sure to insert the Cubloc module correctly as inserting it
upside-down can cause damage to the chip.

Please be aware that our 1 Year Warranty only covers defective items.

Special thanks goes to:

. Alexandre Braun & Lextronics for applications on the Forum

Batman for applications on the Forum
Mauro Russo & Uniplan Software srl, Italy for User Manual Revisions

. Steve Yang & Mr. Bill Ebert for Modbus RTU
. Spence for website links and website bugs

http://www.comfiletech.com/
http://www.comfiletech.com/

Table of Contents

CHAPTER 1 CUBLOC GETTING STARTED... 15
What iS CUBLOC? ...iuiiiiiieiiiiei e e et e e et e e e s e e e e et e e e enseaeens 16
LADDER LOGIC @nd BASICcuituiiniiiieieeiiennsas e ea s s e ssnssnneanaenns 19
Multi-tasking of LADDER and BASICc.ceeuvieniriiinrreieennennnenennaenns 21
Advantages of “"On-Chip” PLC/Embedded Computercccevenvenne. 23
Development ENVIrONMENTc.ivniiiiiicie e 25
Download and Monitoring through the Internet............cooivviiiiiiininnns 26
Hints for traditional PLC USErc.vvviiiiiiiei s en e e e 27
Hints for Micro Controller USErceveuveeiieieniesee e e e e 28
CUBLOC's Internal StruCtUre.......ovviiveiiieie s ee e 29
CUBLOC Peripherals........cooiuiiiiiiiiiiiii i 30

CHAPTER 2 HARDWARE 33
Hardware FEAtUreSc.uvieiieie e e e e e 34
(12 772 PN 35
Supplying power to the CB220..........covvuiviiiiiniiiiii e 37
(O] 77 PPN 38
How to supply power to the CB280cvvuviuiiiiiiiiiiiireien e e 40
(12 772 T S 41
How to connect Battery to CB290.........cocuvviniiiiiniiniicinieeaeas 45
DIMENSIONS .. 46
CUBLOC Chipset : CB280OCSivvuiruiiniieeenrrnneeeensensesenssensensennsenes 48

CHAPTER 3 CUBLOC STUDIO EDITOR/COMPILER 51
CUBLOC STUDIO BASICS ..vuvviiuiiiiniiiiininiiaiseeensisesasenssensensesnsensenans 52
Creating BASIC ...t e e 54
DEDUGGING e 55
1A= 1 1= PPN 56

CHAPTER 4 CUBLOC BASIC LANGUAGE 59
CUBLOC BASIC FEAtUIES ..viiieiiiiiieseei et e e e e e e e 60
Simple BASIC PrOgram ..ueeeeiieeiiieie e iee e e ee e se e e e anens 62
SUb and FUNCHION ..vuieiie e e e 63
Vari@bles ...ouniiii s 69
1] 1 1 o TP 70
About Variable Memory SPaceviviiiiiiiiiiincc 73
2 1= 12 74

Bits and Bytes modifiers......ccouuviiiiiiiiiiii 75

CONSEANES e e 77
(o] 0 1S] =] o] Y o =1 V= PPN 78
OPEFAtOrS .viieiiii 80
Expressing Numbers in Bitsccccoviiiiiiiiii e 83
The BASIC PreprOCESSOr. .. cu e iuieetieiieetrenseensesa et sese s eseenrenaanss 84
(] o 11T o - | 86
To USE LADDER ONLY ...tiitiiiitiiiiiietieeiee et e e s e et es e e s es e enseaane 89
TO USE BASIC ONLY oeiiiiiiiiiieeie ettt e e e s e ea e 89
INtEITUPE. e 90
Pointers using Peek, Poke, and Memadrccocovevnieiiennieniinninnnenns 91
ShariNg Data.....occuvieiieiiiiii e 92
CHAPTER 5 CUBLOC BASIC FUNCTIONS 95
Math FUNCHIONS ... o 96
LY =3O e] 0 V=T =] o] o [P PPPP 98
SEANG FUNCEIONS ..uiviiiiiiii e 99
CHAPTER 6 CUBLOC BASIC STATEMENTS & LIBRARY....ccsssssrrreees 103
7V | () TP 104
S = TP 106
BCA 2N 1euit it e 107
Bl ettt 108
[T o PP 109
BITEE() tenitiiii it 110
BiN2DCA 1euiviii i 110
BiN2DCA ..uieiii i e 111
] =1 o T () PP 112
BYLEIN() ettt 113
BYLEOUL 1euitiii i 114
ChECKBI() teeieiiiie e e 115
[0 TUT o) o () TP 116
COUNLIESEL ...t 118
Dol I 119
DEDUG ..ttt 120
5=l PP 123
DEIAY . initii i 124
5o T X o 125
)] w4 =] o 1PN 126
<] == Vo (PP 127
7 ¥ | (P 128
B W e 130

EKEYPAd .eiieiiiiiiii 131

O N XL et e e 132
[= [0 UL PP 133
(1= () S UP 135
L=] o o (O 136
(1] = [PPSR PPN 137
GOSUD.. REEUMN ..t 138
o) o TS 138
HIGN e 139
|) = | o OO P PPN 140
2 L] o) o R PPN 140
|17 @ =T T [PN 141
07 0T 1= (O 141
If.. Then..Elseif.. . ENdif ... e 142
L1 PR 143
Tl S 144
INPUE. e 145
KB N e 146
K Y I e 146
(1537 0= e PN 147
(1= Ta [[T Yot o R PPN 148
[0 PP 149
1= 0 F=To () PPN 150
1V PP 151
NOP it 152
O Nt e e 153
On Ladderint GOSUDcuiiiiiiiiii e 154
(@] T 2= T 101U o 1S 156
ON RECV L. e 157
(O o T T 0 = o () T PP 158
(@] 7= 5 T'o] o 1PN 159
[T PP 161
OUEPUL Lt 162
(O 101 =) o () PP 163
P AU e i s 163
PEEK() wueniieii i 164
POKE it s 164
PUISOUL .. e 165
PUE . e 166
PUESE et e 167
PUEa e 168
P I e 169

RaAMCIEAN .. e e 171
RV IS ...ttt 172
123 Lo [() PP PRPRTPRPPIN 173
Y= (=T A = YT PPN 174
SEE DEDUG ..uiiiiiiiii e 175
Y= o 7 o PP 176
Set Ladder 0n/off .o 177
SEE MOADUS ...t 178
St OULONIY...enieieiee e 179
SEE Pad cuitiiiiii i 180
T 72 7 183
S UNLl e 184
Y= o g | PP 185
Set ONGIODA ...iviiiiie i 186
1= 1 L PP 187
Set ONLadderint .o 188
SEE ONPAA ..ceiiiiiiiiie e 189
Y=o @] o o =TV 190
Y100 L 0 1= PPN 191
SHIEIN() eeeeiie e 192
ShIEOUL L. v 193
13V () T PPN 194
L= Lo 10 PP 195
L0 1= I 196
B[[T PP 197
UdIaY . it 199
L0257 o 200
[0 1 0 1 1=) G PP PPPRS 201
{1 o I PP PPPRPRP 202
CHAPTER 7 CUBLOC DISPLAY LIBRARY 203
SEE DISPIAY +uvuerieien et 205
[PP PPPR 208
(1]] o I PP PPPPRP 208
(7o PP 208
1 Yot 1 =S 208
PNt e 208
CLCD MOAUIE et e e e e r e e eaens 209
GHLCD Graphic LCD : GHB3224 SEeri€Scccvtiiiiuiiiiiiiiiiiiineineneinenen 212
Rt 215
(12T PSPPI 215

10

(@] o] 7 Pt 215
(o o= | = PP 215
g PP 216
LAY EE it 216
GLAY BT i aas 217
OVEIIAY et 217
(0 L= 1) S 217
[N To] o | PP UPR 218
R0 Lo e 1= T PP PPN 218
FONE e e e 219
S I e 220
(@10 gV T [P PS 221
[o L= PP PP 221
[N = o PP 221
50)PP 221
BOXCIEAN ..ttt s 222
BOXFillL ettt 222
(O] o L PPt 222
Lol 1= 1S 223
EllIPSE ceuiniiiii i 223
Bl e 223
GlOCAEE. ettt 223
GPFINE Lt 224
[5]] o1 o 1 PP PPN 224
(@] 777 RPNt 225
POt i s 226
170 [0 oS 226
1= Y = 226
DOESIZE ettt s 226
PNt e e 227
2 PP 227
DB N s 227
15] 0] o PPN 228
GPUSH e 229
L7 50 o 229
GPASEE . itiie i 230
HPUSH < 231
[5o o L PP 231
HPASTE e 231
Seven Segment Display : CSG SEriesuuovivviiiiiiiiiiiniiieenn, 233
(O [o = ol PP 234

[=Te b1 o LU L PPN 236
[T T [P 236
[T | 1 PPN 236
CHAPTER 8 INTERFACE 237
INput/OULPUL CIrCUIES ..eueiieiiiei e 238
RS232 HOWTO ..uuiiuiiiieeeeneee e s e ee e e e e e e e s e e e e e e e enneens 242
{111 N 244
CUBLOC STUDY BOARD Circuit Diagramccoveuivenieiniininninnnnenn 246
PN o o1 | o 02 PP 248
CHAPTER 9 MODBUS 253
ADOUE MODBUS.... .ot en e e 254
Function Code 01,02 : Bit Read......cccoiuiiieiiiiiiiiiiiiieeee e e 256
Function Code 03,04 : Word Read.......cccoevviiiiiiiiiiiiiiiccececeeans 258
Function Code 05 : 1 Bit WHe ..uvvuiveieieeie e 259
Function Code 06 : 1 Word Writecvveviniiiiiiineie e 260
Function Code 15: Multiple Bit Write.......coocoviviiiiiiniiien 261
Function Code 16 : Multiple Word Writeccoviiiiiiiiiiiieceeieeens 262
[o) O =T o P 263
MODBUS Master Mode (ASCII)......cccuviuiieiiniinieriieee e enseneens 264
MODBUS Master Mode (RTU)ovvuiiniiiniiiiiiii e 266
CHAPTER 10 CUTOUCH 271
ADBOUL CUTOUGCHt e s e e e e e ens 273
[1L PPN 274
CUTOUCH DimMENSIONS...cuitiiiititiiiiienieeiaeiseatasseeteesasesesananeenaes 275
Menu System Library ..o 276
(141 =1\ O I o Tg o o= Lo =3P 276
MENUSEL ..t e 277
MENUEILIE «.ovieeieie e e 277
1= g 10Tl g =T ol L (O PP 278
MENUIBVEISE ..eiitiiieiii ittt e s e e s e s s e rans 278
17T o 11 P 278
WaIEAIrAW .. 279
Touch Pad Input EXample......oouiiiiiiiiiee e 280
CUTOUCH I/O POIS .uevuieueieeeenseeseneeeees e ess s ennsensenssen s e enneennes 282
REIAYS ..ttt 285
Backup Battery......oiiviiiiiiiiiii 286
KEEP Timer and KEEP Countercoiiiiiiiiiiceee e 287

12

CHAPTER 11 APPLICATION NOTES 299

NOTE 1. SWItch INPUL ...ceiei e 300
NOTE 2. Keypad INPULvuiniiiiiiiicse et e e e e 302
NOTE 3. TemMperature SENSOKvvieriuiiiiiriiiiiiar e 305
NOTE 4. Connect to the Internet through XPORTccocviiniininnnns 310
NOTE 5. SOUNA BYLES....cuieiiiiiiiiiiiin e e 314
NOTE 6. Step Motor Pulse Generation........ccceveviiiiiiiniiiniieieneanen 317
NOTE 7. RC S€rVO MO0 ..uiuiiiiiiiiieiiieiss it e s s s e e eeaees 319
NOTE 9. DS1302 RTC .uivuiiuiiiiinieeeiieie e ess s et s e e s e e e e an e een 322
NOTE 10. MCP3202 12 Bit A/D CONVErSION ..vuivvieieeiiieieineienereenenenes 324
NOTE 11. Read and write to the EEPROM.........cccoeviiiiiiiiieccneene 326
NOTE 12. XPORT Server program to control multiple devices from
SINGIE PC Liniiiii i 328
MEMO e 338
CHAPTER 12 LADDER LOGIC 339
LADDER BaSICS..tutuiuitieneirininiarinensssssssessasassnsessssasasnssnsnsssensnnns 340
Creating LADDER........ccuiiiiiiiiiiiiine e 342
Editing LADDER TEXE...uivuiiuiiiniinieieiinersennsssessensensensssssnsenssnnsennees 344
[\ 11 o] o [Ve [PPN 348
Time Chart MONITONNG ..vvuvviiiiiier e 349
WATCH POINT Leuiiniiiiiiiiieeie e s e e s e e et e e e e s e e s e s ranaaaeans 350
Relay EXPreSSiONcuuieiiiiiiii et 355
Ladder SYMDbOISiui i 357
USING /08 .ttt et 359
USE Of AlI@SES. .. uiuiiieiiiiiii i e e e 360
Beginning Of LADDERcuiiiiiiieeiisci e e e e s e e 361
Declare deviCes tO USEcuvveienriiiriieereneeee e ses e ere e ensensenees 361
To Use Ladder Only, without BASIC........cocciviniieiiiiinineceieeennas 362
Enable Turbo Scan Time Modeccivviiiiiiiiiiiii e 363
Things to Remember in LADDERcciiiiiiiiiiiiiieeeeea e 364
ladder INSErUCHIONS .. vviveievi e ees 367
LOAD,LOADN, OUT .euiiiiiiiiiee et ete e e e e e e e e e e e e e e e e een 369
NOT, AND,OR... ittt e s e e e e e eas 370
SETOUT, RSTOUT etitiiiiieeiee et e e erne e s sessnssnssnsennss s e sensennees 371
[O) I P 372
(O ST 1 [1] UP 373
R I = 2] = PP UPR 375
I 11 = 2O 1V PP UPR 376
LI 1 P 17X PPN 377
IO L S 7Y@ L N 378

L I P 379
UP/DOWN COUNTERitiiiiiiiiiiiiieii e e 380
(O LU PP TPTN 381
SO0 11 5 L PP 381
(0] 50T =] g 1=Te] o N Mo T | ol PPN 382
How to store Words and Double WOordscovvvvveiinnennieniennennees 383
Binary, Decimal, Hexadecimal........ccoviiiiiiiiiiii e 384
WMOV, DWMOV ...iiiiiiiiiiiii it ai s r e s e e e e e e eens 385
WXCHG, DWXCHGiiiiiiiiiiiinii e rr s ea e 386
FMOV ot 387
GMOV ..ttt 388
WINC, DWINC, WDEC, DWDECcccuiiiiiiiiiiinieeieee e ean e 389
WADD, DWADD ... ciuuiiiiiiiiiiiiiii i s ai s sr s an s e eans 390
WSUB, DWSUBoiiviiiiiiiiiiiiinii s 390
WMUL, DWMUL ©.etiiiiiiiiieete e s e s s e e s e e e nannaeans 391
WDIV, DWDIV .. iiiiiiiiiiiueiiias et sei e e et s s s ra s e e e s e e e s eaneaeans 392
WOR, DWOR ...ttt s e aa e eans 393
WXOR, DWXOR ..etiiiiiiiiiiiiis i e 394
WAND, DWAND ...uiiitiiiitieiie et reineea e e s e sr s e s ean e e s e e e eannaeens 395
WROL, DWROL ...cuiiiiiiiiiieiie et st st e s ra s e e e s e e e eaneaeens 396
WROR, DWRORoiiiiiiiiiiiiiiii i s aa e 397
GOTO, LABEL ..uiviiiiiiiii it e 398
CALLS, SBRT, RET ..ituiiitiiiiiiiiieieieirse et esi e sr e s e s ea s e s eenesannaeens 399
) O TP 400
Special REIAYS ... cuviieiiiii e 401
APPENDIX 403
AppendiX A. ASCII CODE........ciuuuiieiniiiiiaiiieeiieeiie et seisssensaensesnnns 404
Appendix B. Note for BASIC STAMP USEIScovvvniiniiiiiiiniiinienens 405
Appendix C. Using Output Port on the CB290 / CT1720........cuvenvenee. 406
Appendix D. CB280 Proto Board Schematics.........cccovviviiiiiiiininnennn. 407
Appendix E. CB290 Proto Board Schematicscccovvviviiiniinniennen, 409
AppendiX F. CB280CSoieuiiiiiiiiiiriei e 413
Appendix G. CUBLOC BASIC Command SUMMAIYcceeuveenrenennsn. 418

14

Chapter 1

CUBLOC
Getting started...

What is CUBLOC?

CUBLOC is different from the traditional PLCs that you may associate with.
Traditional PLCs have cases and connections like the picture below but
CUBLOC is an “On-Chip” PLC/Industrial Controller, meaning you have more
freedom and flexibility to the final product size and design.

CUBLOC Modules are similar to traditional PLCs in that LADDER LOGIC can
be used. But its small size allows developers to design custom PCBs just
like a microcontroller.

traditional PLC

CUBLOC core module

There are different models, each with a unique program memory size and
number of I/O ports. Please make a selection based on your product’s

requirement.

Model

Picture

Program

Memory

1/0 Ports 16 49 + 2 9142
Data Memory | 2KB 2KB 24KB
(Basic)

Data Memory | 1KB 1KB 4KB
(Ladder)

EEPROM 4KB 4KB 4KB
PWM 3 6 6

Ext. INT 0 4 4
RS232 2 2 2
Package 24 Pin DIP 64 Pin Module 108 Pin Module
RTC Include

16

The main advantage of CUBLOC over other PLCs is that it fills LADDER
LOGIC's weaknesses with BASIC language. LADDER LOGIC is good enough
to replace sequence diagrams, but to collect data, print graphics, and
process complex tasks is asking a little bit too much. That is why we added
the BASIC language. You can now run both LADDER LOGIC and/or BASIC!

Another advantage over other BASIC processors is that CUBLOC is able to
separate the amount of work and programming between LADDER LOGIC
and BASIC as necessary. The user is able to debug easier by having two
processes work together, instead of grudging through lines of BASIC codes.

DIM A AS INTEGER
H IF IN(0) = 0 THEN
OUT 2,A

LADDER LOGIC

& CUBLOC studio [d:#¥sourceWcublocstudioWtestsourcetfcaralram. cul 1

Flle Edit Devce Aun Setup Help
BOE S LB A > nu|EE
[F11 BASIC | [F2] LADDER | Ladder Mnemonic |
' ALRAM
& CUBLOC studio [c:Wcubloc_testWu3-1018.cul]
case 2 File Edt Devics un Setup Hels
If F_KEY1 = 1 Then Elo Edi Doice fun Seup fily
MODE = 1 EETIEIRS VI RTN I
CHIRP_TIMER = 8 [FilBASIC [F2] LADDER \LadaerMnemum:\
F_REYl = 0 PLC | Ak || — | | | {C] I /_ | L=<1| FO | 4HFO | iHFO | #FO
DOORCLOSE TIMER = 10| Weard| 3 | 74 | Fs | 5 | F7 ARG AR A A A kA
End If POl P PRI RO M8 =
Incr SIREN_TIMER 1 ¢
. 31/
out SIREN, STREN_TIMER.BI] jsENs—xcw xeew ><\cw)»T
out LED, SIREN_TIMER.BIT3 ME PE TOUCH SENS INPUT-P31, MEXCH ~TOUCH =
Out FLIGHT,STREN TIMER.B| | 32 H 7
. - XOW-T LS5
Pal P PSS R Ms
' vALET
SOy e O
-TSENS-XCCH -XCW Recw-T
Case 3 M3 pel TOUCH SENS INPUT-PaI, ME=+CCW ~TOUCH
If F_KEYl = 1 Then s H
MoDE = 1 XCCH-FLSHN
CHIRP TTMER = 8 Pl PE P R M0
e 1 ¢
Fre =0 % ks Yo vebw 1! Vewer
5 _ NS e W
ond g?ORCLDSE—TI"ER =19 TOUCH SENS INPUT-Pa1, MIGYCH -TOUCH
—/
Incr LEDTIMER % dcw—T—stp
out LED, LEDTIMER. BIT4 Pal PE PSR Mt
End select 57 HA—EH O
End Sub -TSENS-YCCH -vCW Vech-T
i G TOUCH SENS INPUT-PSI. “MII=YCCW -TOUCH
Sub TIMER_CONTROL () 38 vccwnswv
el . PP e
< o VT 1A 9]
-Tstns-2w [-zcew 2T
iz pet TOUCH SENS INPUT-P. MIZ=ZCH -TOUCH
w L |
%6 Vi Program : 9602 Byfes. Data ¢ 101

Picture of "CUBLOC Studio” is shown above.

17

There are PLCs on the market currently that supports both LADDER and
BASIC. But these PLCs do not multi-task and run “Single-task.” Meaning
BASIC is part of LADDER and does not run independently like CUBLOC.
This can prove to be costly since BASIC is not real-time oriented and can
affect LADDER part of the program. CUBLOC is able to cover these
weaknesses through its multi-tasking features, guaranteeing accuracy and
precision of timing. Unlike many BASIC processors on the market today,
CUBLOC supports real-time processing and multi-tasking.

CUBLOC has a multi-tasking structure that runs BASIC and LADDER
simultaneously that allows accurate LADDER scan timing and still processing
BASIC. You even have a choice of simply using BASIC or LADDER by itself.

SINGLE TASK MULTI TASK
LADDER:
BASIC
LADDER BASIC
LADDER
| BASIC

As you can see, CUBLOC is a brand new type of industrial controller. By
being able to do things that traditional PLCs couldn’t through BASIC
language, we have expanded the horizons of both PLCs and BASIC micro-
computers.

Unlike some BASIC controllers out on the market today, CUBLOC is fully
backed by many Plug-N-Play peripherals such as our CuBASE industrial I/0
Boards and Plug-N-Play Relay8 Boards. With these peripherals, controlling
DC/AC devices becomes a walk in the park.

With 32-bit IEEE floating point math support and MODBUS ASCII and RTU
support, the user will find one of the most advanced BASIC/PLC hybrid chip
on the market today.

Another analogy to real life would be to automobiles. Do you have a very
small fast car? Or do you have a monster truck? How would it be to use
an SUV? Yes, CUBLOC is sort of like an SUV in the automobile world. You
have the best of the worlds. Although it's not as fast as a raw MCU, you
can take advantage over the overall development cost and time using our
Plug-N-Play peripherals or a simple serial cable to program the modules.

18

LADDER LOGIC and BASIC

The biggest advantage of LADDER LOGIC is that all circuits are processed in
“Parallel,” meaning they are all processed at the same time.

PO P2 P9
A

P3

P5 P6 B8
e HH

As you can see above, both A and B circuits are in a waiting state, ready to
turn output On as soon as input is turned On. For example, if input P3
turned On, P9 would turn On.

In comparison, BASIC processes code in order, a type of “Sequential
Processing.”

Dim AAs Integer
Dim B As Integer

A=0 Jump
Again:
ForB=0to 10
Debug DECA,CR
A=A+10 Loop
Next _
Goto Again

These 2 types of programming languages have been used in different fields
for a long time. LADDER LOGIC is used in automation controllers such as
PLCs. On the other hand, BASIC and other programming languages such
as C and Assembly have been used in PCs and MCUs.

Whether you are an experienced MCU or PLC user, you will be able to
benefit by integrating both BASIC and LADDER LOGIC in your designs.

19

The biggest advantage that LADDER LOGIC possesses is the ability to
process input within a guaranteed slot of time. No matter how complex the
circuit becomes, LADDER LOGIC is always ready to output when it receives
input. This is the main reason why it’s used for machine control and other
automation fields.

LADDER LOGIC is more logic oriented, not a complete programming
language. To do complex processes, it has its limits. For example, to
receive input from a keypad, display to 7 Segment or LCD, and process
user’s input is a daring task for LADDER LOGIC.

But these things are rarely a problem for programming languages such as
BASIC. BASIC is able to process floating point numbers, data
communications, and other things beyond the scope of what LADDER LOGIC
can do alone. Another advantage that BASIC has is that its language is
very similar to the English language (IF, GOTO, etc..), allowing the
beginners and the developers to learn in matter of hours, instead having to
deal with months of learning curves.

LADDER LOGIC Programming Languages
(BASIC, C, ASM)
Device PLC PC or Micro-Computer
Application Automation, Machine- | General Computing
Control
Advantages Sequencer, Bit Logic, | Complex Math,
Timers, Counters Data Communication,

Data Collection & Process, Analysis,
Graphic Interface

Basic Parallel Sequential

Mechanism

LADDER LOGIC’s parallelism and BASIC sequential language both have its
advantages over each other. LADDER LOGIC is able to process what
couldn’t be done with BASIC. On the other hand, BASIC is able to process
easily what either couldn’t be done or is very hard to do with LADDER
LOGIC.

That is why we created “CUBLOC,” which the user is free to use both
LADDER LOGIC and/or BASIC based on the application being created. After
understanding the advantages of both LADDER LOGIC and BASIC, the user
will be able to create more efficient final products while saving development
time and costs.

20

Multi-tasking of LADDER
and BASIC

There are many ways to implement both BASIC and LADDER in one
processor. The current products on the market use BASIC as part of
LADDER LOGIC. These products support BASIC and LADDER LOGIC but
there is one clear weakness.

/\ FUNGC #1
‘ PO P1 Print "Setting Mode"

FUNC #1 A=A+1
B=B+1

RETURN

The first weakness is that based on the execution time of BASIC, LADDER
LOGIC also gets affected. If the BASIC code is made up of an infinite loop,
LADDER LOGIC will also stop.

LADDER LOGIC's main advantage is that it can process input in a
guaranteed scan-time. If LADDER LOGIC cannot process within this
guaranteed scan-time because of BASIC, it might be better to not include
BASIC capabilities.

The second weakness is that BASIC can only be used as part of LADDER
LOGIC. BASIC is a powerful language by being able to process complex
algorithms. But if we can only use BASIC as part of LADDER LOGIC, we
are not fully using BASIC to its maximum performance.

The third point has to do with I/Os. BASIC language’s execution of I/Os
can create unwanted collisions with LADDER. The reason is that LADDER
LOGIC I/Os are updated while in BASIC, 1/Os are directly accessed.

After solving these problems, we have created a BASIC and LADDER LOGIC
processor that supports real-time “multi-tasking.” BASIC runs BASIC and
LADDER runs LADDER, simultaneously without causing collision between the
each other.

21

With just BASIC, you will be able to create many devices. In comparison to
other BASIC processor on the market today, CUBLOC's BASIC clearly has
faster processing speed and the upper hand on the main features. If
LADDER LOGIC is not necessary, the user may use just BASIC.

In the case of I/0s, the user can specifically control the I/0Os used by BASIC
and LADDER, thereby eliminating I/0O collision problems.

CUBLOC uses BASIC as its main language. We recommend controlling
LADDER from BASIC.

For example, there is a MASTER CONTROL feature in LADDER LOGIC,
allowing the user to set Control Zones. Control Zones are sections within
the LADDER LOGIC that the user can set entire sections of the control circuit.
With the MASTER CONTROL feature, the user can enable/disable LADDER
LOGIC's Control Zones easily.

M1 MCS 0

IfA=1 THEN _M(1) = 1
1fB=1 THEN _M(1)=0 _|
MCSCLR 0

In BASIC, the user may read or write to LADDER LOGIC’s data memory.
In the above example, you can access relay M1 as _M(1) and write to it
from BASIC.

As you can see, CUBLOC supports BASIC and LADDER multi-tasking
simultaneously through “data memory sharing.”

22

Advantages of "On-Chip”
PLC/Embedded Computer

One of the main advantages of CUBLOC is that it is an “On-Chip” PLC.
Normally, we think of PLC as a block type case with input and output lines.
When using these PLCs, an external case, and cabinet must be used in
addition to other mind-bogging wiring requirements

When using just a couple of sets, this might not present a big problem. But
when mass-producing such PLCs, labor cost for assembling the PLCs and
faulty parts could lead to many problems. Most importantly, the overall
design of you final product will be bigger and will cost more to produce.

CuBLOC
CORE MODULE

23

CUBLOC is an “On-Chip” PLC, allowing easy fit on a PCB. You may use the
PLC almost like an MCU. You can design a customized PCB for the desired
product which reduces the cost and size of your final product, and most
importantly, allow the product to be one-of-a-kind.

The following table shows differences between a traditional PLC and “On-
Chip” PLC/Micro-computer, CUBLOC.

Traditional PLC CUBLOC
Picture
Production Din Rail Attachment Din Rail or PCB
Labor Costs High Low
Mass- Difficult Easy
Production
Final Product | High Low
Cost
Final Size Large Compact

If you are currently using a traditional PLC, please review our product and
compare the costs if you change it to a PCB type. We believe that you will
have much more satisfactory final product at a fractional cost.

24

Development Environment

To use CUBLOC, the user may use a Windows XP, 2000, or 98 operating
system equipped computer. If you would like to use it in
Linux/Unix/Macintosh environment, you will need to install a virtual machine
software of some type (such as VMware, etc..) that allows Windows
operating system to run on it.

An RS232 port is also required or you may use a USB-to-RS232C converter.
Download and Monitoring is possible when connected with the PC.

RS232

sout v 24 vin

SIN O 2 . 2303 vss
Rx ATN [3 2203 RES
vss 4 21 vbD

T PO Qs 200 P15
P1 Q6 = 10 P14

DTR P2 Q7 18[1 P13
P3 s 170 P12

GND P4 Q9 160 P11
P5 10 150 P10

Pe 11 14 PO

P7 12 130 P8

When CUBLOC is disconnected from the PC, it goes into a STAND-ALONE
state. The main program is stored in CUBLOC's flash memory, and will be
retained even with no power. The user may download new programs and
erase them as many times as he or she wishes.

Cubloc core module with Study board

25

Download and Monitoring
through the Internet

XPORT is an internet module that converts RS232 signals into TCP or UDP
packets. You can use XPORT and CUBLOC to download and monitor
programs through the internet.

By using this feature, you will be able to update and provide customer
service for your products even if it's located in other parts of the world. We
provide custom XPORT firmware, Downloading/Monitoring Server programs
and embeddable applets for downloading and monitoring your CUBLOC
module. You may use this program to manage thousands of devices.

Please refer to our CUBLOC Forum on our homepage for application notes.
(http://www.cubloc.com)

erver 1.3.0 Copyright (c) 2005 by Comfile Technology Inc.
o] Fast ot (Frmware| Downioat)
[+ Automaic Re-Download
ooo
Woritoring
I Check hers if manitoring CuTOUCH or CB200 Soarch
Plufrfcfo|r]

foreris 30 00010203 0850807 o: 1231519: /102:168.05 Port: 59001

B Morlorspee N: 10001 PE192:160.0.99 Port: 53001
PPiIEP3 0 00010203 04050607 o

o]
PPaear 0 00 01020304080607 on|

o
[PrRisRes 2 00 ®1®2®3 04650007

»
CEEIFIE b ©0C102@3 086050607

£
tared UDP soeron port 5900 of i local machine. %
oty St t 192160, Seteied s 52001 &)

224
Cleartoxt Fimware Dowrload 18¢

Monitoring/Download Server Program for multiple XPORTs

26

http://www.cubloc.com/

Hints for traditional PLC User

For users with much experience in traditional PLCs, they will find BASIC a
completely new language. CUBLOC is a PLC with BASIC language
capabilities added. The user may program only using the ladder language.
By having the option of using the BASIC language, even the PLC user may
be able to incorporate new features to the final product by making use of
BASIC, which has much powerful capability and flexibility in communicating
with other devices than PLCs.

To use CUBLOC, the user does not have to know BASIC. He/She may
simply use only LADDER for development. If the user does not require LCD
display or keypad usage, he or she does not need to use BASIC at all.

As you can realize, more emphasis on user interface is becoming apparent
in our industrial world. CUBLOC is able to overcome the deficiencies and
disadvantages of traditional PLCs by being able to use both BASIC and
LADDER language.

DISPLAY

KEYPAD

PC INTERFACE

MACHINE CONTROL

We provide many BASIC libraries for user interfaces which you can simply
copy & paste to achieve the user interface structure desired.

27

Hints for Micro Controller User

MCU, Micro Controller Unit, is programmable micro-computers such as PIC,
AVR, and 8051. For mass-production, MCUs can cut costs and reduce the
overall product size. But the main disadvantage of MCUs is that it is hard
to develop and takes a long time. For simple projects, this might be a good
route.

Even those experienced engineers feel that MCU programming is time-
consuming and not a simple task. To make a final product, it takes many
hours programming and debugging with an MCU. Even after development,
if bugs arise, it becomes almost impossible to update the MCU.

In comparison, Comfile’s CUBLOC will cut the users development time as
much as 20 times and provide a MCU-like chip that is upgradeable through
RS232 cable or even through the internet by using an XPORT. By being
able to provide a way to upgrade the final product, the value of your final
product is much more than what you thought.

If you have experience programming with MCUs, we guarantee you that
development of your final product will be much easier. You will be able to

spend more time designing the features of your final product, instead of
spending hours and hours in front of a computer.

flash programmer
target board target board

MCU engineer's desk CUBLOC engineer's desk

28

CUBLOC'’s Internal Structure

BASIC LADDER
Interpreter Processor

BASIC
Program Memory

e SRAM o FLASH

2KB~24KB 80KB

LADDER
Program Memory

2]

e SRAM

1KB~4KB

FLASH
80KB

BASIC LADDER
Data Memory Data Memory

e 1/0 Ports

The BASIC interpreter contains a “Flash memory” for user’s BASIC
programs. LADDER processor also has a “Flash memory” for user’s LADDER
program. I/O ports are shared among BASIC and LADDER, allowing free
access to both.

BASIC data Memory can only be accessed by BASIC interpreter while
LADDER data memory can be accessed by both BASIC Interpreter and
LADDER Processor.

BASIC program memory(1) and LADDER(2) share the same Flash Memory.
The total available memory space is 80KB. BASIC can use the whole
memory or LADDER may use the whole memory. As long as the BASIC
and LADDER program total is within 80KB, the user is free to program as
he/she wills. (CB2XX series allow 80KB; future models will have more
memory)

I/O ports (5) can be used both by BASIC and LADDER. The user must

specify I/O ports to use in LADDER and BASIC. All I/O ports can be used in
LADDER or BASIC.

29

CUBLOC Peripherals

PROTO BOARD Series

Proto-boards for CUBLOC can be used for testing and debugging your future
products before starting PCB artwork or production. These proto-boards all
include basic power and interface circuits.

BASE BOARD (CUBASE Series)

Base-boards for CUBLOC, BASE-Board, are especially geared for the
industrial field applications. Simply attach our Plug-N-Play relays to the
output ports for implementing solenoids, magnetic switches, and etc... With
24V input ports and DIN-RAIL Mount Brackets, the user does not have to
re-invent the wheel by using CUBASE.

30

STUDY BOARD

Study board is geared for first timers and experienced developers to
CUBLOC. Peripherals for simple experiments including switches, LED,
RS232 communication, I2C, piezo, ADC, toggle switches, and LCDs are
included.

We recommend the Start Kit for first-timers, which includes this study board,
a CUBLOC module, necessary cables, and a manual.

LCD DISPLAY Module

(CLCD, GHLCD Series)

Various LCD displays are provided for use with CUBLOC using CUNET (I2C)
protocol. With one line commands (PRINT, CLS, etc...), you can easily start
printing to the LCD without hassling with complex lines and commands.

CUNET is especially engineered for CUBLOC displays, therefore, we
recommend to use CUNET supported LCDs for quick and easy development.
Our Graphic Display GHLCD allows you to download Black and White BMP
images from your computer and store it in its memory.

31

7 Segment Display Modules (CSG Series)

7 Segment display, modules can be easily implemented using CUBLOC's 12C
protocol and native commands.

[l'l I'l .

[iy

CUTOUCH Series

CUTOUCH is an integration of our graphic LCD, touch panel, and CUBLOC
core module. With BASIC, you can control the GHLCD, touch panel. With
LADDER LOGIC, I/0O ports can be controlled in real-time.

We are constantly upgrading and developing new peripherals for CUBLOC
core modules. Please check out our website www.comfiletech.com often for
these updates.

32

Chapter 2
Hardware

Hardware Features

CUBLOC have the following features:

(BASIC and LADDER LOGIC) 80KB Flash Memory

BASIC Execution Speed : 36,000 Instr./sec

LADDER Execution Speed : 10ms Scan time
(Turbo Mode ~= 100 Micro Second)

Data Memory for BASIC: 2~24KB

Data Memory for LADDER: 1~4KB

EEPROM Memory: 4KB

16 to 91 I/O pins (ports)

10 bit, 8 Channel ADC

8~16bit, 3 or 6 Channel PWM (DAC)

UART (H/W RS232C ports) 2 Channels

RS232C port PC interface

RTC chip included (CB290)

Model Comparison Chart

34

Feature CB220 CB280 CB290
Program 80KB 80KB 80KB
Memory
Data Memory BASIC 2KB BASIC 2KB BASIC 24KB

LADDER 1KB LADDER 1KB LADDER 4KB
Battery N/A N/A Available
Backup
EEPROM 4KB 4KB 4KB
1/0 ports 16 49 +2 91 +2
Package 24 pin DIP 64 pin Module 108 pin Module
ADC 8 Channel 8 Channel 8 Channel
PWM 3 Channel 6 Channel 6 Channel
External None 4 4
Interrupt
HIGH COUNT | 2 Channel 2 Channel 2 Channel
INPUT
RTC None None Yes
Operation 40~60mA 40~60mA 70~100mA
current
Operation -40°C~125°C -40°C~125°C -40°C~125°C
Temp.

CB220

CB220 is comes as a 24pin DIP type package.
internal 5V power regulator.

It has 16 I/O ports and an

soutd 1 24 [VIN (5.5V~12Vinput)
sINO 2 . 23 vss
ATNO 3 22 RES
vss O 4 218 vDD
ss_pods 20 P15_HCNTO
(Inputonly)SCK_P1 [6 = 193 P14_HCNT1
MosI_P2 O 7 183 P13
MIso_P3 O 8 173 P12
P409 163 P11_TX(CH1)
PWMO_P5] 10 15[P10_RX(CH1)
PWM1_P6 0 11 [14 P9_SDA(CUNET)
PWM2_P7] 12 13| P8_SCL(CUNET)
Name Pin # 1/0 Port Block Explanation
SOUT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND
PO 5 1/0 ADCO / SPI SS
P1 6 Input ADC1 / SPI SCK
P2 7 1/0 ADC2 / SPI MOSI
P3 8 1/0 Block 0 ADC3 / SPI MISO
P4 9 1/0 ADC4
P5 10 1/0 PWMO / ADC5
P6 11 1/0 PWM1 / ADC6
P7 12 1/0 PWM2 / ADC7
P8 13 I/0 CuNET SCL
P9 14 1/0 CuNET SDA
P10 15 1/0 RS232C Channel 1 RX
P11 16 1/0 Block 1 RS232C Channel 1 TX
P12 17 1/0
P13 18 1/0
P14 19 1/0 High Count channel 0
P15 20 I/0 High Count channel 1
VDD 21 1/0 5V Output/Input
RES 22 IN RESET Input (LOW signal resets!)
VSS 23 IN GROUND
VIN 24 IN 5.5V~12V Input Power

35

SIN, SOUT, ATN are connection pins to the PC/XPORT for DOWNLOAD,
DEBUG, and MONITORING. All CUBLOC models have SOUT, SIN, ATN pins
and you can connect to the PC serial cable as shown below.

sout 1 7 24 viN
SIN O 2 231 vss
ATN O3 22 [RES
vss O 4 21 A vbD
PO 5 20 P15
P16 19 P14
P2 07 181 P13
P3 8 170 P12
P4]9 16 [P11
P5] 10 151 P10
P6 [11 147 P9
P7 012 13 P8

Other pins are mostly I/O ports. The user may select which ports (pins) to
use as INPUT or OUTPUT. When set to INPUT, the pin enters a HIGH
impedance state whereas when set to OUTPUT, the pin ether outputs LOW
or HIGH. The maximum current coming out of the output ports is 25mA.
The user is free to choose which I/0 ports he/she will use for which purpose
(such as AD, PWM, etc...).

36

Supplying power to the CB220

CB220 has an internal 5V power regulator that accepts anything between

5.5~12V of power.

It will produce a stable 100mA 5V. When using the internal regulator,
voltage can be inputted to pin 24 and 5V will output on pin 21. If 5V is
used for power, the user may simply connect to pin 21. If your application
requires more than 100mA of current that can be supplied by the internal
regulator, please use a separate power supply.

Method 1

DC5.5~12V

souT O
sIN O
ATN O
vss O
Po O
P1 O
P2
P3 O
P4
P5 O
P6 [

P7 O

Method 2

© N DA ®N =

©

1
12

240 VINJ

231 vss
221 RES
21 vDD
200 P15
190 P14
180 P13
17 P12
160 P11
150 P10
140 P9

130 P8

souT O

sIN O

Rx ATN O
vss O

Tx Po O
P1 [

DTR P2 O
P3 O

GND P4
P5

Pe

P7

©® N O R WN 2

"
12

n VN DC5V
0 vss
0 RES
0 vDD
b P15
N P14
g P13
g P12
N0 P
0 P10
0 P9
N Ps

37

CB280

CB280 is in a 64 pin module package and 49 of those pins can be used for
I/0. The CB280 does not have a 5V internal regulator.

souTt
SIN

ATN

vss

$S_PO

(Input_only) SCK_P1
MOSI_P2

MISO_P3

P4

PWMO_P5
PWM1_P6
PWM2_P7
(CUNET)SCL_P8
(CUNET)SDA_P9
P10

10 @17
20 @18
30 @19
40 @20
50 @21
60 @22
70 @23
80 @24
90 @25
100 @26
10 @27
120 @28
130 @29
140 @30
150 @31

VDD
vss

RES

NIC

P16

P17

P18

P19_PWM3
P20_PWM4_INTO
P21_PWM5_INT1
P22_INT2
P23_INT3
P15_HCNTO
P14_HCNT1

P13

1

RX1
AVDD

NC
ADCO_P24
ADC1_P25
ADC2_P26
ADC3_P27
P47

P46

P45

P44

P43

P42

P41

P11 |16@ @32 P12 P40

9 | TTLTX1

TTLRX1
AVREF
Pag
P31_ADC7
P30_ADC6
P29_ADC5
P28_ADC4
P32

P33

P34

P35

P36

P37

P38

P39

The pin numbers below are categorized by features, not by pin numbers.
Name Pin 1/0 Port Explanation
Block
SouT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND
PO 5 I/0 SPI SS
P1 6 Input SPI SCK
P2 7 1/0 SPI MOSI
P3 8 1/0 Block 0 [sp MISO
P4 9 I/0
P5 10 1/0 PWM Channel 0
P6 11 1/0 PWM Channel 1
P7 12 1/0 PWM Channel 2
P8 13 /0 CuNET SCL
P9 14 1/0 CuNET SDA
P10 15 1/0
P11 16 /0 Block 1
P12 32 1/0
P13 31 1/0
P14 30 1/0 High Count Channel 0
P15 29 1/0 High Count Channel 0
P16 21 1/0
P17 22 1/0
P18 23 1/0
P19 24 1/0 Block 2 | PWM Channel 3
P20 25 1/0 PWM Channel 4 / INT Channel 0
P21 26 1/0 PWM Channel 5 / INT Channel 1
P22 27 1/0 INT Channel 2
P23 28 1/0 INT Channel 3

38

P24 37 1/0 ADCO : AD Channel 0

P25 38 1/0 ADC1 : AD Channel 1

P26 39 1/0 ADC2 : AD Channel 2

P27 40 1/0 Block 3 | ADC3 : AD Channel 3

P28 56 1/0 ADC4 : AD Channel 4

P29 55 I/0 ADCS5 : AD Channel 5

P30 54 1/0 ADC6 : AD Channel 6

P31 53 I/0 ADC7 : AD Channel 7

P32 57 1/0

P33 58 1/0

P34 59 1/0

P35 60 1/0 Block 4

P36 61 1/0

P37 62 1/0

P38 63 1/0

P39 64 1/0

P40 48 1/0

P41 47 1/0

P42 46 1/0

P43 45 1/0 Block 5

P44 44 1/0

P45 43 1/0

P46 42 1/0

P47 41 1/0

P48 52 1/0

VDD 17 IN Power, 4.5V~5.5V

VSS 18 IN GROUND

RES 19 IN RESET Input (LOW signal resets!),
Normally HIGH or OPEN

TX1 33 RS232 Channel 1, +/- 12V Data Output

RX1 34 RS232 Channel 1, +/- 12V Data Input

AVDD 35 ADC Power

TTLTX1 49 RS232 Channel 1, 5V (TTL level) Data
Output

TTLRX1 50 RS232 Channel 1, 5V (TTL level) Data
Input

AVREF 51 ADC Reference Voltage

39

How to supply power to the CB280

The CB280 does not have a 5V regulator; you must provide your own 5V
power like shown below.

VoD X1 33 @ @ 49 | TTLTX1
vss RX1 34 @ @ 50 | TTLRX1
REs AVDD 35 @ @ 51 | AVREF
NIC NC 36 @ @ 52 [P4s
P16 P24 P31
P17 P25 P30
P18 P26 P29
P19 P27 P28
P20 P47 P32
P21 Pas P33
P22 P45 P34
P23 P44 P35
P15 P43 P36
P14 P42 P37
P13 P41 P3s
P12 P40 P39

* Pin 20 and 36 are not used, please DO NOT CONNECT anything.

40

CB290

CB290 is in a 108 pin module package, of which 91 pins can be used as I/O

ports.

It has a battery backup-able 28KB of data memory and RTC. CB290 does

not have an internal 5V regulator.

The pin numbers below are categorized by features, not by pin numbers.

10021 410061
. 2

190 @39
200 @40

60 ® @ 80

95 @@ 81
96 @ 82

Of the I/0 ports, 32 ports are Output
only, 32 ports are Input only, and rest can be set as desired by the user.

Name Pin # I/0 Port Block Explanation

SOouUT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND

PO 5 1/0 SPI SS

P1 6 Input SPI SCK

P2 7 I/0 SPI MOSI

P3 8 /0 Block 0 SPI MISO

P4 9 1/0

P5 10 I/0 PWM Channel 0

P6 11 1/0 PWM Channel 1

P7 12 1/0 PWM Channel 2

P8 25 I1/0 ADCO : AD Channel 0

P9 26 I/0 ADC1 : AD Channel 1
P10 27 1/0 ADC2 : AD Channel 2

P11 28 1/0 Block 1 ADC3 : AD Channel 3

P12 29 I1/0 ADC4 : AD Channel 4
P13 30 I/0 ADC5 : AD Channel 5
P14 31 1/0 ADC6 : AD Channel 6
P15 32 I/0 ADC7 : AD Channel 7
P16 83 1/0 CUNET SCL

P17 84 I/0 CUNET SDA

P18 85 1/0 INT Channel 2

P19 86 1/0 Block 2 INT Channel 3

P20 97 1/0

P21 98 I/0

41

P22 99 I/0 High Count Channel 0
P23 100 I/0 High Count Channel 1
P24 45 Output

P25 46 Output

P26 47 Output

P27 48 Output Block 3
P28 49 Output

P29 50 Output

P30 51 Output

P31 52 Output

P32 65 Output

P33 66 Output

P34 67 Output

P35 68 Output Block 4
P36 69 Output

P37 70 Output

P38 71 Output

P39 72 Output

P40 53 Output

P41 54 Output

P42 55 Output

P43 56 Output Block 5
P44 57 Output

P45 58 Output

P46 59 Output

P47 60 Output

P48 73 Output

P49 74 Output

P50 75 Output

P51 76 Output Block 6
P52 77 Output

P53 78 Output

P54 79 Output

P55 80 Output

P56 13 Input

P57 14 Input

P58 15 Input

P59 16 Input Block 7
P60 17 Input

P61 18 Input

P62 19 Input

P63 20 Input

P64 33 Input

P65 34 Input

P66 35 Input

P67 36 Input Block 8
P68 37 Input

P69 38 Input

P70 39 Input

P71 40 Input

42

P72 87 Input

P73 88 Input

P74 89 Input

P75 90 Input Block 9

P76 101 Input

P77 102 Input

P78 103 Input

P79 104 Input

P80 91 Input

P81 92 Input

P82 93 Input

P83 94 Input Block 10

P84 105 Input

P85 106 Input

P86 107 Input

P87 108 Input

P88 81 N/C N/C (Do not use this I/O number)

P89 82 1/0 PWM Channel 3

P90 95 1/0 Block 11 PWM Channel 4 / INT Channel 0

P91 96 1/0 PWM Channel 5 / INT Channel 1

VDD 21,44 IN Power, 4.5V~5.5V

VSS 22,64 IN GROUND

RES 23 IN RESET Input (LOW signal resets!),
Normally HIGH or OPEN

VBB 24 IN Battery Backup

TX1 41 RS232 Channel 1, +/- 12V Data
Output

RX1 42 RS232 Channel 1, +/- 12V Data
Input

AVDD 43 ADC Power

TTLTX1 61 RS232 Channel 1, 5V (TTL level)
Data Output

TTLRX1 62 RS232 Channel 1, 5V (TTL level)
Data Input

AVREF 63 ADC Reference Voltage

The CB290 output-only pins P24~P55 are in high impedance state(High-Z)
at power ON. You can use “Set Outonly On” to set them all to output
states.

Set Outonly On

This command only works with CB290 rev B. The revision number is
written on the bottom side of the CB290 module.

A fake port 88 was made to make the Set OUTOnly command, which is
same as LOW 88. Therefore, when using the CB290 Rev B, you may not
use port 88 (P88) for other purposes. Please do not use USEPIN 88 when
using with LADDER.

43

Vvdd TX1
Vss RX1
RES Avdd

THTX1
TtIRX1
AVref

VBB Vss
P8/ADO P32
P9/AD1 P33
P10/AD2 P34
P11 /AD3 B85}
P12 /AD4 P36
P13 /AD5 [PE7/
P14 /AD6 & P38
P15/AD7 2 o~ P39
P64 SosEE P48
P65 TPnZZ P49
P66 ODONODN® IO — N M P50
P67 fEinaacbhnnard®f P51
P68 CANTOONODO = NO T P52
P69 0 % X 00D D EWDDDD DO D P53
P70 0000000000000 P54
P71 000000OOGOOOOOO P55

LON DO =AM OO N D

PP POO0000S0 SO

O OrNMOND®D T 0©N

SO ANNNNNN RO DD D

Lo NN Y T T

== E£f

== 33

oo 2%

v

F' cB290 i °
7 8 5 6

11\ 2 \ 9 \ 10

Port Blocks

How to connect Battery to CB290

When a super capacitor is used for VBB of CB290, a length of couple days to
couple weeks can be backed up once powered OFF. CB290 consumes
about 15-20mA of current when idling. For longer backup period, a battery
can be used. Using a battery with large capacity could yield up to 1 year of
data backup. Make sure to use a diode as shown below for using batteries.

VBB

CB290

Power Features

Operating Voltage : 4.5V ~ 5.5V

Operating Clock : 18.432MHz

I/0 Port Source Current : 20mA

I/0 Port Sink Current : 25mA

Operating Temperature : -40~125 Degrees(Celcius)
Maintenance Temperature: -60~140 Degrees(Celcius)
Operating Humidity : 5~95% RH

(Keep the board's surface dry when testing and/or operating)

Additional Information

If CUBLOC module is supplied with power above recommended voltage, the
chip can be destroyed. Please be careful of static electricity that could
damage the chip. Please be aware that P1 is an input-only pin.

To block noise, please set all pins not used to input and set all outputs to
Low when not being used. All I/Os are set to input as default at power-ON.
When not using SIN, SOUT, and ATN pins, please do not connect them to
anything.

45

Dimensions
CB220

30mm (1181 mil)

—>

15.24mm (600 mil)

25.4mm (1000 mil)
i o0 o0 4

1 e .o

2mm (78.74mil) | oo ..

LX) oo 34.9mm (1374mil)

:: CB280 s

. .e

e LN)
L] T v

—»| |4 2mm (78.74 mil)

18.415mm (725 mil)

46

. 59.4mm (2338 mil)
49.53mm (1950 mil)

17’. > hd o0
—a | ee (X)
[o0
[(LJ
2mm (78.74 mil) b4 [X3
o0 o0
e CB290
(X J (X)
o0 o0

o0 36.83mm (1450 mil) o0 47.8mm (1882mil)
o0 o0
o0 o0
o0 (X)
(X J o0
o0 (X
(X) o0
o0 o0
o0 o0
o0 o0
°? i

—»| |4 2mm (78.74 mil)

10.8mm (425 mil)

14.0 ~14.9mm (551~586mil)

] CB290

9.5mm (374mil)
Please refer to the above picture for PCB design. The numbers are Offsets
based on location 0, 0.

X:150 X:2100
Y:1600 Y:1600

+ - 4

CB290

X:575
Y:150

<%
[SES)

Unit: 1/100 Inch (Mil)

47

CUBLOC Chipset : CB280CS

The CB280CS has exactly the same features as a regular CB280 chip except
it's in a chipset format. By using the CB280CS, the user is able to solder
the chipset directly on to their PCB. This will lower your overall production
cost while integrating CB280 into your product seamlessly.

Since this chipset has same features as a regular CB280, we recommend

you develop your applications on the CB280 before going into production
with the chipset version.

*The CB280CS includes: Main Chip, Sub Chip

f2zddddaaaagsaan
ANO000000000nNnnn
T 3¢ 58 88 0Lb8SBIB IS5 B
voo O1 o 48 [P35
rxo 2 a7 [p3s
Tx0 Os 46 [P37
p1s s 45 [Pp3s
(PwM3)P1s [5 44 [P39
(PWM4/INTO)) P20 O — 43 [pas
Ewis/INTYP21 D7 cuBLoc 2 a7 VDD s vss
NT2P22 O 41 3 pas
(NTyP2s o CBZ SOCS 40 [Pas RS :2%‘;2583257: RO
sspo 1o : : 39 [P44
(szwjpw on Main Chlp 38 [pas R4 043 Sub Chip = R1
mosyp2 12 37 [pa2 R3 4 5 R2
Mmisops 13 36 [P41
Pa 14 35 [Pao
(PWMO)Ps []15 4 [P11
(pwM1)Pe []16 33 [P10
E 22 R AR &8 RRAB KRB 5 8
guoooouooooooootoog
B > NN z z
- gt L
Main chip pin out
Pin # Name Function Desc.
1 VDD Power Supply
2 RX0 DOWNLOAD RX RS232-RX
3 TXO0 DOWNLOAD TX RS232-TX
4 P18 1/O port
5 P19 PWM3 1/0O port
6 P20 PWM4 / INTO 1/0 port
7 P21 PWMS5 / INT1 1/0 port
8 P22 INT2 1/0 port
9 P23 INT3 1/0 port
10 PO SS 1/0 port
11 P1 SCK 1/0 port
12 P2 MOSI 1/0 port
13 P3 MISO 1/0 port
14 P4 1/0 port

15 P5 PWMO 1/0 port

16 P6 PwWM1 1/0 port

17 P7 PWM2 I/O port

18 P16 1/0 port

19 P17 1/0 port

20 /RESET Reset (Low active)
21 VDD Power supply
22 VSS Ground

23 XTALOUT Xtal output
24 XTALIN Xtal input

25 P8 CUNET_SCL I/O port

26 P9 CUNET_SDA 1/0 port

27 RX1 RS232 CH1 RX RS232 Channel 1 Rx
28 TX1 RS232 CH1 TX RS232 Channel 1 Tx
29 P12 I/O port

30 P13 I/O port

31 P14 HCOUNTO 1/0 port

32 P15 HCOUNT1 1/0 port

33 P10 I/O port

34 P11 1/0 port

35 P40 1/0 port

36 P41 1/0 port

37 P42 I/O port

38 P43 I/O port

39 P44 1/0 port

40 P45 1/0 port

41 P46 1/0 port

42 P47 1/0 port

43 P48 1/0 port

44 P39 1/0 port

45 P38 I/O port

46 P37 1/0 port

47 P36 1/0 port

48 P35 1/0 port

49 P34 I/O port

50 P33 I/O port

51 P32 1/0 port

52 VDD Power supply
53 VSS Ground

54 P31 ADC7 1/0 port

55 P30 ADC6 1/0 port

56 P29 ADC5 1/0 port

57 P28 ADC4 I/O port

58 P27 ADC3 1/0 port

59 P26 ADC2 1/0 port

60 P25 ADC1 1/0 port

61 P24 ADCO I/O port

62 AREF Ref. for ADC
63 VSS Ground

64 AVDD Power supply for ADC

Please refer to Appendix F for detailed CB280CS specification.

49

CB280CS Application Schematic

to PC

DOWNLOAD

0MF x2

gobooooooouooouooudg

1
i
owr == g4 13
rc 6 w n oV
OuF —/ qr7 N og
[. s S-S 8a 3@ e
o [88888 8
£ 22222
S 8NBR2853 8833
feaffeegslege ¢
ononnonnn onn
8 8858 8 38 Y58 2
Supervisor 777 “©
Ty ;
VDD , VSS 4
5 —
rP———C{Rs5 2 RO} pis O 4 45
R4 o R+ ¢ (Pwmzp1e O s M
R3 o Rzl\ (PWM4/NTO)P20] 6 — 43
(PWMs/INTHP21 O 7 l :I 'BLDC 42
(NT2P22 O 8 41
anTyP23 O 9 CBZ8OCS 40
(ss)po O 10 : f 39
] 11 (SCK)P1 Maln Chlp 38
. woshez O ATMEGA128-16A -
Mmiso)P3] 18 36
Pa]™ 35
110 1 Pwmoyps O = ‘ o s
o
PwM)Pe] 16 = 33
=~ 2 2 R5 NR SR AKRRKBS Y
oouo guooouoouoouog
seg|lelgslzeesrress
g 2|k 53 3=
e | g S e
2z =
33
5V
tE\/DD -y
oscouT
do vssjq
18.4320MHz
OSC ILLATOR
Example
CB280CS
Main Chip ety
{8kt 055
18.4320MHz
Oscillator
CB280CS
Sub Chip

50

Chapter 3
CUBLOC STUDIO
Editor/Compiler

CUBLOC STUDIO Basics

After installing CUBLOC STUDIO and executing it, you will see the following
screen.

CUBLOCstudio [untitled.cul 1 [S=1[E9)

File Edit Device RAun Setup Help
BOU ¢ B3R A > it E &
[FI1 BASIC | [F2] LADDER | Ladder Mnemanic |

& CUBLOCstudio [untitled.cul] Ex

File Edit Device Fun Setup Help
2oL S LHE A it B =
[FI1BASIC [F2] LADDER | Ladder Mnemanic|

pLC -H-‘-M— —| 1| -{1‘{01 ||z
Wizard F3 Fd F& FB Fi F F8 F11 F12 | NOT
31

eno]
END

1O | iFO | 1FO

Insert | Delete| Undo

O
Copy.

32
33
34
= []
36

37

38

39

xifi ¥i35 Maodified Program : 9602 Bytes. Data : 101

You will see that at first CUBLOC STUDIO will be in TEXT EDITOR Mode.

If you press F2, the screen will change to LADDER EDITOR Mode and if you
press F1, it will switch back to TEXT EDITOR Mode.

52

Source files are saved under file extensions .CUL and .CUB, as TWO FILES.
If you need to backup or move source files, you must save BOTH of these

files.
open 2| x|
Laok in: I@ My Documents j = £ '
@My Pictures
File: riame: I j Iﬂl
" Files of type: ICUBLDE Saurce file[* cul] j Cancel |

4

When opening a file, you will only see .CUL files. (.CUB files are not

displayed, but they are in the same folder).

When you open .CUL file,

CUBLOC STUDIO automatically opens CUB file.

The source code can only be saved on the PC. Source code downloaded to
the CUBLOC module can not be recovered.

IMPORTANT
CUBLOC module supports “Code-
protection.” By encrypting

download data, others can not
simply read part of the chip’s
memory to access the source
code.

When you press the RUN button (or
CTRL-R), Save-> Compile->
Download-> Execute are
automatically processed.

LADDER and BASIC both are
compiled with one RUN button. If
error is found during compilation,
the screen will move to where the
error occurs.

53

Creating BASIC

You can create BASIC code as shown below. CUBLOC Text Editor is similar
to most text editors and supports Coloring of certain commands.

& CUBLOC studio [d:#WsourceWcublocstudioWiesisourceWcaralram.cul 1

File Edit Device Fun Setwp Help
BOLE F ARE &> ntE &
[FI1 BASIC | [F2) LADDER | Ladder Mnemonic |

out SIREN, SIREN_TIMER.EIT3 ~
Out LED, SIREN_TIMER.BIT3
Out FLIGHT, SIREN_TIMER.BIT4

.

" VALET
case 3
If F_KEYl = 1 Then
MODE = 1
CHIRP_TIMER = @
F_KEYl = 0
DOORCLOSE_TIMER = 10
End If
Incr LEDTIMER
Out LED, LEDTIMER.BIT4
End Select
End Sub

Sub TIMER_CONTROL(
Dtzero CHIRP_TIMER
Dtzero DOOROPEN_TIMER
Dtzero DOORCLOSE_TIMER
Dtzerce LIGHT _TIMER
Dtzero DELAY TIMER
End Sub

sub OUTPUT_PROC (
If LIGHT_TIMER > 0 Then
Out FLIGHT, LIGHT_TIMER.BIT3
End If
If CHIRP_TIMER > 0 Then

Ant STBEN ~UTDD mTWED DTmA L

< >
Line : 1 Modified Program : 9602 Bytes. Data: 101
Short-Cut Explanation
CTRL-Z UNDO
CTRL-O OPEN
CTRL-S SAVE
CTRL-C COPY
CTRL-X CUT
CTRL-V PASTE
CTRL-F FIND
CTRL-HOME Go to the very beginning
CTRL-END Go to the very end
CTRL-Y REDO

54

Debugging

%@ CUBLOC studio [d!¥sourceWcublocstudioWiestsource®... g@@
File Edit Device Bun Setup Help

BoL LB Ay n it EE
[FI1 BASIC | [F2] LADDER | Ladder Mnemanic |

Const Device = CBZE0
Delay 10
Debug "Hello"

+ Debug Terminal

Baud Rate Parity Data Bits gy 1y ﬁ n

Port
[com | [115200 | [uene <] 6 | @gy

~ Fix Right Side

As you can see in the above example, DEBUG command can be used to
debug your BASIC program while it's running. Be aware that you are not
allowed to use both Debugging and LADDER Monitoring at the same time.
You must remove Debug commands or comment them out with an
apostrophe to use LADDER Monitoring. Another option is to use the
command “Set Debug Off”, which will turn OFF the DEBUG feature.

55

Menus

File Menu
Open... Ctrl+0 I
Ladder Import |
Save Ctrl+5
Save As...

Save Object,..

Print Ladder
Print BASIC,.,
Print Setup, ..

Download from object file

BASIC Section
Ladder Section

Fi
F2

CCubloc_TestWc290exouttest cul
CCubloc_TestWBCDTEST. cul
CCubloc_TestWbrmpdown, cul

CCubloc_Testitata, cul

Exit
Menu Explanation
New Create new file.
Open Open file.
Ladder Import Import Ladder Logic part of a CUBLOC program.
Save Save current file.
Save As Save current file under different name.

Save Object

Save current program as an object file. Use this to protect
your source code. Object file is strictly binary format file so
others cannot reverse engineer it. You can use “Download
from Object File” to download your object file to CUBLOC.
Create object files for internet-downloading with CuMAX or
CuMAX Server.

Print Ladder

Print Ladder Logic Section only.

Print Basic Print Basic Section only.

Print Setup Setup Printer for printing Ladder Logic Section.

Download from | Download an Object file to the CUBLOC module.

Obiject file

Basic Section Switch to Basic Section for editing. (Or press F1).
Ladder Section Switch to Ladder Logic Section for editing. (Or press F2).

Last 4 Files Edited

View last 4 files edited.

Exit

Exit CUBLOC Studio

56

Run Menu

Reset
Ladder Maonitor on Ctrl+F7
BASIC Debug Terminal,,,
Tirme Chart Manitor,,,
cleat CUBLOC flash mernaory
WMiew Relay Usage,
Menu Explanation
Run Compile Basic and Ladder, download to CUBLOC
module if there are no errors, and restart the program
automatically. To disable automatic restart, please go
to Setup->Studio Option to change.
Reset Reset CUBLOC Module.
Ladder Monitor on Start Ladder Monitoring
BASIC Debug Terminal Open BASIC Debug Terminal Window.
This window opens automatically when there’'s a
DEBUG command in the source code.
Clear CUBLOC's Flash | Clear CUBLOC's Flash Memory.
Memory

View Relay Usage

(After Compiling) View relay usage of Ladder Logic.

Setup Menu
P up

PC interface setup,.,
Editor environment setup,.,
Studio Options, ,,

Use Korean menu

Firmware download

Menu

Explanation

PLC Setup Wizard

Automatic BASIC source code generation for Ladder Logic

PC Interface Setup

Setup the RS232 COM PORT for Download/Monitor.
Select COM1 through COM4.

Editor Environment

Setup

Setup Editor Environment options for BASIC text editor.

Studio Options

CUBLOC Studio Options.

Firmware Download

Download Firmware to CUBLOC CORE. Please use this to
download firmware to CUBLOC CORE manually.

57

MEMO

58

Chapter 4

CUBLOC
BASIC Language

IMPORTANT

You must declare the device being used before using BASIC or LADDER.
Below is an example of declaring CUBLOC CB220 module.

CONST DEVICE = CB220 ¢ Use CB220.

This should be the first line at the start of your program. When this
command is not used, CB220 model will be chosen as default.

CONST DEVICE = CT1720 ¢ Use CT1720.
CONST DEVICE = CB280 ¢ Use CB280.

59

CUBLOC BASIC Features

Interface PC with RS232C Port

CUBLOC BASIC uses RS232 port to interface with the PC. You also have
option of using it to connect to XPORT and use monitoring/downloading via
the internet.

CUBLOC BASIC supports functions and sub

routines.

Like C language, the user is able to create sub-routines and functions to
lessen the complexities of their programs. By being able to use sub-
routines and functions, it is now possible to simple copy & paste for new
programs, instead of starting everything from scratch.

Function SUM(A As Integer, B As Integer) As Integer
Dim RES As Integer
RES = A + B
SUM = RES

End Function

Calculations can be done within conditional
statements such as If, While, etc...

IF ((A + 1) = 100) THEN GOTO ABC

IF ((A + 1) = 100) AND (B / 100 = 20) OR C = 3 THEN GOTO ABC

Multi-dimension arrays are supported.

CUBLOC supports multi-dimension arrays including character arrays. Up to
8-D arrays are supported and character arrays only allow one-dimensional
arrays.

DIM A(100,10,20) AS BYTE

60

Hardware RS232 Communication are Supported
CUBLOC supports hardware RS232 communication, meaning it does not
conflict with real-time processing.

Conditional Statements are supported.
CUBLOC BASIC supports SELECT CASE and DO..LOOP conditional
statements.

A graphic LCD library is provided.

CUBLOC provides a complete graphic LCD library for GHLCD. Drawing
boxes, lines, circles, and graphic commands are easily implemented in few
lines of code.

Various Communication Protocols are supported.
CUNET : Display Peripherals such as LCD

RS232 : 2 channel

MODBUS : HMI and Touch screen Protocol

12C : I12C commands supported (I2CREAD, I2CWRITE)

SPI : SPI commands supported (SHIFTIN, SHIFTOUT)

PAD: Keypad, touchpad supported.

Advanced Basic Language is Comparable to C
Language.

#include support

#define support

#if.. #ifdef..#endif conditional compile support

Incr, Decr commands: same function as C's + +, - -

Pointers allowed (PEEK, POKE, and MEMADR)

String Arrays (1-Dimension)

61

Simple BASIC program

Below is an example of simple BASIC program with Do...Loop statement.

Dim A As Byte

Do
Byteout 0, A
A=A+1

Loop

This program outputs to Port PO-P7 an increasing value of A. The next
program uses a function to accomplish the same task:

Dim A As Byte

Do
Byteout 0, A
A=ADD VALUE (A)
Loop
End

Function ADD VALUE (B As Byte) As Byte
ADD VALUE = B + 1
End Function

By separating A=A+1 to a function, the user will be able to separate one big
program into small chunks. As you can see here, the main program ends
when “END” comes and functions are added afterwards.

MAIN PROGRAM

suB

FUNCTION Sub routine

S

- I I

62

Sub and Function

For sub-routines, you can either use Sub or Function. Sub does not return
any values whereas Function does return values.

Sub SubName (Paraml As DataType [,ParamX As DataType] [,...])

Statements
[Exit sub] ' Exit during sub-routine

End Sub

Function FunctionName (Paraml As DataType [,...]) [As ReturnDataType]
Statements

\

[Exit Function] Exit during sub-routine

End Function

To return values using Function, simply store the final value as the name of
the Function like shown here:

Function ADD VALUE (B As Byte) As Byte
ADD VALUE = B + 1 ' Return B+l.
End Function

63

Global and Local Variables

When you declare variables inside a Sub or Function, it is considered to be a

“Local” variable.
Function and removed at exit.

The Local Variables are created upon call of the Sub or
This means that the Local Variables will use
the Data Memory and then free it for other resources.

Local Variables may

only be referred to or used inside the Sub or Function.
On the other hand, Global variables may be used in all parts of your code.

Main Program

Global Variable

Sub Program A

Local Variable

Sub Program B

Local Variable

Dim A As
LOOP1:
A=A+1
Debug Dp(A),CR
DELAYTIME
Goto LOOP1
End

Integer

Sub DELAYTIME ()
Dim K As Integer
For K=0 To 10
Next

End Sub

' Declare A as Global Variable
Display A on Debug screen
Call Sub DELAYTIME

End of Main Program

' Declare K as Local Variable

In the program above, “A” is declared as Global Variable and “K" is declared
as Local Variable. A can be used anywhere in your code but K may only be

used inside the subroutine DELAYTIME().

Arrays may not be used for Local Variables.
Global Variables.

64

Arrays must be declared as

Calling subroutines

Once the subroutine is created, you can use them like a regular command.
For Sub, you do not need parenthesis around the parameters. For multiple
parameters, use a comma to separate them.

The example shows how this is done:

\

DELAYTIME 100 Call subroutine

End

Sub DELAYTIME (DL As Integer)

Dim K As Integer ' Declare K as Local Variable
For K=0 To DL
Next

End Sub

For Function, you need parenthesis around the parameters. Parenthesis is
required even when there is no parameters.

Dim K As Integer

K = SUMAB(100,200)
in K

Debug Dec K,cr

End

\

Call subroutine and store return value

Function SUMAB (A AS INTEGER, B AS INTEGER) As Integer
SUMAB = A + B
End Function

65

Subroutine Position

Subroutines must be created after the main program. To do this, simply
put “End” at the end of your main program like shown here:
(“End” is only required if you have subroutines)

Dim A As Integer
LOOP1:
A=A+1
Debug DP(A),CR
DELAYTIME
Goto Loopl

End ' End of main program

Sub DELAYTIME ()
Dim K As Integer
For K=0 To 10
Next

End Sub

Sub and Function subroutines come after the "End”. Gosub subroutines
must be within the main program like shown here:

Dim AAs Integer
Gosub ABC
ABC:

E-n d

Sub DEF(B as Byte)

End Sub

Function GHI(C as Byte)

En.d Function

* End command is used to differentiate between BASIC main program and
the subroutines. END command used in Ladder Logic is to indicate the
end of Ladder Logic.

66

Subroutine Parameters and Return Values

Function may use any data type as parameters and return values.

Dim A(10) As Integer

Function ABC(A AS Single) as Single ' Return Single value
End Function

Function ABC (A AS String * 12) as String *12 ' Return String
value
End Function

Function ABC(A AS long) ' Long value as a parameter
End Function ' When return value is not declared, Long
will be used as return value.

\

Exceptions includes using arrays as parameters.

\

Arrays may not be used as
' parameters.

Function ARRAYUSING (A (10) AS Integer)

End Function

But you may use one element of an array as a parameter.

Dim b (10) as integer
K = ARRAYUSING (b (10))

\

Use 10™ element of array b as a parameter.

Function ARRAYUSING (A AS Integer) as integer
End Function

All subroutines’ parameters are “Call by value”, meaning the values are only
used as reference. Even if the parameter value is changed within a
subroutine, it will not affect the actual variable used as a parameter like
shown here:

Dim A As Integer

Dim K As Integer

A = 100

K = ADDATEN (A)

Debug Dec? A, Dec? K,CR ‘A is 100 and K is 110
End

Sub ADDATEN (V As Integer)
V=V + 10 *
ADDATEN = V

End Sub

A does not change when V is changed.

67

In contrast, there is “Reference by Address”, in which the actual Data
Memory address is passed to the subroutine. CUBLOC only supports
“Call by Value”.

Too many characters in one line?
If you run out of room, you can use an underscore character (_) to go to
the next line like shown here:

ST = “COMFILE TECHNOLOGY"”

ST = “COMFILE
TECHNOLOGY"”
Comments

Use an apostrophe (*) to add comments. Comments are discarded during
compile, meaning it will not take up extra Program Memory.

\

ADD VALUE = B + 1 Add 1 to B. (Comment)

Nested subroutines
Nested subroutines are supported in CUBLOC.

\

A=FLOOR (SQR (F)) Do Floor () on SQR(F) .

Colons
Colons may not be used to put append commands in CUBLOC BASIC.

A=1: B=1 : C=1 ' Incorrect.
A=1 ' Correct.

B=1

Cc=1

68

Variables

There are 5 types of variables in CUBLOC BASIC.

® BYTE 8 bit Positive Number, 0~255
) INTEGER 16 bit Positive Number, 0~65535
® LONG 32 bit Positive/Negative Number,

(-2147483648 ~ +2147483647)
® SINGLE 32 bit Floating Point Number,
(-3.402823E+38 ~ 3.402823E+38)
° STRING String, 0 TO 127 bytes

A Byte is an 8 bit positive number representing 0 to 255.

An Integer is a 16 bit positive number representing 0 to 65535.

A Long is a 32 bit positive or negative number representing

-2,147,483,648 to 2,147,483,647.

A Single is a 32 bit positive or negative floating point number representing
-3.402823x10%® to 3.402823 x 10%,

LonG | |{ Il |1 |

*For storing negative numbers, please use LONG or SINGLE.
Use DIM command for declaring variables as shown below:

Dim A As Byte 'Declare A as BYTE.

Dim B As Integer, C As Byte 'Comma may NOT be used.

Dim ST1 As String * 12 'Set String size for String.
Dim ST2 As String 'Set as 64 bytes (default).
Dim AR(10) As Byte 'Declare as Byte Array.

Dim AK(10,20) As Integer 'Declare as 2D Array

Dim ST (10) As String*10 'Declare a String Array

VAR Command (Same function as DIM)
VAR can be used in place of DIM to declare variables. Below are examples
of how to use VAR:

A Var Byte ' Declare A as BYTE.

ST1 Var String * 12 ' Declare ST1 as String of 12 bytes.

AR Var Byte (10) ' Declare AR as Byte Array of 10.
AK Var Integer (10, 20) ' Declare AK as 2-D Integer Array
ST Var String *12 (10) ' Declare String Array

69

String

A String size can be set up to 127 bytes. When size is not set, default
value of 64 bytes will be used as the String size.

Dim ST As String * 14 ' For maximum usage of 14 bytes
Dim ST2 As String ' Set as 64 byte String variable

When setting a String as 14 bytes, another byte is allocated by the
processor to store NULL. When storing "COMFILE TECHNOLOGY” in a 14
byte String, the last 4 characters (bytes) will not be stored.

Dim ST As String * 14
ST = “COMFILE TECHNOLOGY

"o\

“LOGY” is not stored

COMFILE TECHNOLOGY

[CIORETTITEL TTElCER] =© &Y

do notfit here

In CUBLOC BASIC, (") must be used for String. An apostrophe (‘) may not
be used.

ST = “COMFILE “ TECHNOLOGY” ' (%) can not be used inside the String.
ST = “COMFILE ‘' TECHNOLOGY” ‘' (') can not be used inside the String.
ST = “COMFILE , TECHNOLOGY” ' (,) can not be used inside the String.

You can use CHR(&H22) to express (") and CHR(&H27) to express (*) and
CHR(&H2C) to express (,).

Example for printing to LCD:

Print Chr (&H22),“COMFILE “ TECHNOLOGY”,Chr (&H22) ' (%)
Print Chr(&H27),"“COMFILE “ TECHNOLOGY”,Chr (&H27) * (') Apostrophe

70

To connect multiple Strings, you can use a comma as shown below:
Print “ABC”,”DEF”,”GHI” ' Same as PRINT “ABCDEFGHI”.
Use CR for Carriage Return (Next Line).

Print “California”,CR ‘' Print California and go to the next line.

Merge Multiple Strings

To merge multiple strings together, use & as shown below:

Dim al As String * 30
Dim a2 As String * 30
al "Comfile "

a2 = "Technology "

al al + a2 + ",Inc"
Debug al,cr

The above program will show “Comfile Technology, Inc” on the debug
screen.

71

How to Access Individual Characters within a
String

You can use strings like an array. Simply append “_A" after the name of
your string variable like shown here:

\

DIM ST1 AS STRING * 12
STl = “123"
ST1 A(0) = ASC("A") ' Store A in the first character of STI1.

ST1_A Array is created at the same time.

When you declare Dim Stl as String * 12, Stl1_A(12) is also declared
automatically by the RTOS. The string and the array use the same
memory space. Whether you use the string or the array, you are still
accessing same memory location.

The example below shows how to convert blank characters to z.

Const Device = CB280
Dim a as integer

Dim st As String * 30
st="COMFILE"
Print st,cr

For a = 0 To 10

If st a(a) = Asc(" ") Then
st_a(a) = Asc("z")
End If
Next
Print st

With string arrays, you may not use this feature.

Dim st (10) As String * 3

72

About Variable Memory Space

In the case of CB220 and CB280, 2KB (2048 bytes) of data memory is
available. You may not use the whole data memory for variables. Part of
the data memory space is reserved for use by peripherals such as DISPLAY
and the RS232 buffers. The 80 bytes are used for DEBUG command.

Sub and Function routines and interrupt routines use up data memory space.
Of the available 2048 bytes, about 1800 bytes can be used for global
variables. The more Sub/Function routines you use, you will have less
memory available for variables and constants.

When the user uses buffers with command SET DISPLAY or OPENCOM, the

data memory will lose that much amount of memory space to use for
variables.

Initializing Memory
CUBLOC BASIC data memory is not cleared at POWER UP. The user must
initialize variables to zero or use RAMCLEAR command to clear the whole
memory.

Ramclear

The data memory will contain garbage values at POWER UP.

This is because in the case of Battery-backuped modules, the variables will
remember their values after powering off and on.

73

Arrays

CUBLOC BASIC supports up to 8 dimensional arrays, each dimension
allowed up to 65535 members.

DIM A(20) AS BYTE ' Declare A's array size as 20
DIM B(200) AS INTEGER ' Declare Integer array
DIM C(200) AS LONG ' Declare Long array

\

DIM D(20,10) AS SINGLE 2-dimensional Single array
DIM ST1(10) AS STRING * 12 ' Declare String array

ae [[T
A(3,6)

y a4 -
A(3,3,6) 777

CUBLOC supports multi-dimension arrays including character arrays. Up to
8-D arrays are supported. Please make note of how much memory is used
when using multi-dimensional arrays.

‘13 * 10 = 130 Bytes of Data Memory
DIM ST1(10) AS STRING * 12

' 4%10 * 20 = 800 Bytes of Data Memory
DIM D(20,10) AS SINGLE

74

Bits and Bytes modifiers

A variable’s bits and bytes can individually be accessed by using the
commands shown below.

DIM A AS INTEGER
DIM B AS BYTE

A.LOWBYTE = &H12 ' Store &H12 at A’'s lowest byte
LOWBIT Variable’s bit 0
BITO~31 Variable’s bit 0 through 31

A.BIT2 = 1 'Make bit 2 of A 1.

vy]
<
—
m

Nibble

A Nibble is for 4 bits. By using Nibbles, the user has more flexibility to
manipulate the data.

LOWNIB Variable’s NIBBLE 0
NIBO~7 Variable’s NIBBLE 0~7

A.NIB3 = 7 ' Store 7 in Nibble 3 of A

N
LONG|I|I||I||\)||I||I|I
N N NS
NIB7 NIB6 NIB1 NIBO
LOWNIB

75

Byte
To specify certain bytes of a variable, the below names can be used.
(A Byte is 8 bits)

LOWBYTE, BYTEQ BYTE 0 of Variable
BYTE1 BYTE 1 of Variable
BYTE2 BYTE 2 of Variable
BYTE3 BYTE 3 of Variable

A.BYTEl = &HAB 'Store shab in byte 1 of A

LONG | Byres || Byte2 || Byter || BYTEO
LOWBYTE

Word

To specify certain Word of a variable, the below names can be used:
(A Word is 16 bits)

LOWWORD, WORDO Word 0 of variable

WORD1 Word 1 of variable

A.WORD1 = &HABCD ‘Store &habcd in word 1 of A

LONG | WORD/1 | WORDO
LOWWORD

*Max's Tips: Need to access 5 bits of a variable?
Try NewVariable = Variable and 0x1F.
This will mask the last 5 bits of the variable.

76

Constants

Constants can be used to declare a fixed value at the beginning of the
program. By doing this, readability and debuggability of the source code
will be easier.

The command CONST can be used to declare constants in CUBLOC.

CONST PI AS SINGLE = 3.14159
CONST WRTTIME AS BYTE = 10
CONST MSG1 AS STRING = “ACCESS PORT”

When the constant is not given a type, the compiler will find an appropriate
type for it as shown below:

\

CONST PI = 3.14159 Declare as SINGLE

CONST WRTTIME = 10 ' Declare as Byte

CONST MYROOM = 310 ' Declare as Integer since it's over
255.

CONST MSGl = “ACCESS PORT”

\

Declare as String

CON (Another way of CONST)
The Command CON can be also used to declare constants in the following
way:

PI CON 3.14159 ' Declare as SINGLE.
WRTTIME CON 10 ' Declare as Byte
MYROOM CON 310 ' Declare as Integer

\

MSG1 CON “"ACCESS PORT” Declare as String

77

Constant Arrays...

By using constant arrays, the user is able to store a list of humbers before
the program begins. By using constant arrays, the program can be
simplified as shown below:

Const Byte DATAl = (31, 25, 102, 34, 1, 0, 0, O, O, 0, 65, 64, 34)
I=0

A = DATAIL (I) ' Store 31 in A.

I=1I+1

A = DATAIL (I) ' Store 25 in A.

Const Byte DATAl = ("CUBLOC SYSTEMS")

String data can be store in Byte constant arrays. The ASCII code of the
character is returned.

If DATA1(0) is read, ASCII code of ‘C’ is returned. Likewise if DATAL(1) is
read, ASCII code of ‘U’ is returned.

Whole and floating point numbers can be used as shown next:

CONST INTEGER DATAl = (6000, 3000, 65500, 0, 3200)
CONST LONG DATA2 = (12345678, 356789, 165500, 0, 0)
CONST SINGLE DATA3 = (3.14, 0.12345, 1.5443, 0.0, 32.0)

For multi-lines of constants, following ways can be used:

1)
CONST BYTE DATAl = (31, 25, 102, 34, 1, 0, O, O, O, O, 65, 64, 34,
12, 123, 94, 200, O, 123, 44, 39, 120, 239,
132, 13, 34, 20, 101, 123, 44, 39, 12, 39)
2)

CONST BYTE DATA2 = (31, 25, 102, 34, 1, 0, 65, 64, 34,
101, 123, 44, 39, 12, 39)

Strings can be used as shown next:

CONST STRING * 6 STRTBL = (“COMFILE”, “BASIC”, “ERROR”, “PICTURE")

78

Please set the size of the String to be greater than any of the members of

the constants.

Only 1 dimensional array is allowed for constants.

Comparison Array Constant Array
Storage Data Memory (SRAM) Program Memory (FLASH)
Stored Time During Program run During Download
Can be Changed Yes No
Purpose Changing Values Unchanging values
Power OFF Disappear Kept

79

Operators

When using many logical operators, the below priority table is used to
determine which operator is operated on first.

Operator Explanation Type Priority
~ To the power of Math Highest
*,/,MOD Multiply, Divide, MOD Math
+,- Add, Subtract Math
<<, >> Left Shift, Right Shift Logic
<, >, <=, >= Less than, Compare

Larger than,
Less or Equal to , Larger

or Equal to.
=, <> Same, Different Compare
AND, XOR, OR AND,XOR,0R Logic Lowest

Please refer to the above table for checking priority of operator used. In the
rows, the highest priority is calculated from the left to right.

You can use operators as conditions like below:
IF A+l = 10 THEN GOTO ABC

Whole numbers and floating point numbers can be mixed. The final result
follows the type of variable it will be stored in.

DIM F1 AS SINGLE

DIM A AS LONG

Fl1 = 1.1234

A =Fl * 3.14 ' A gets 3 even though result is 3.525456.

Please make sure to include a period(.) when using floating point numbers.

F1 = 3.0/4.0 ' Write 3/4 as 3.0/4.0 for floating values
F1 = 200.0 + FLOOR(A) * 12.0 + SQR(B) '200 as 200.0, 12 as 12.0..

AND, XOR, OR is used for logical operations and as Bit operators.

v

IF A=1 AND B=1 THEN C=1 = if A=1 and B=1 ...(Logical Operation)
IF A=1 OR B=1 THEN C=1 ‘' if A=1 or B=l...(Logical Operation)

A = B AND &HF ‘Set the upper 4 bits to zero. (Bit Operation)
A = B XOR &HF ‘Invert the lower 4 bits. (Bit Operation)
A = B OR &HF ‘Set the lower 4 bits to 1. (Bit Operation) .

80

Strings can be compared with the “=" sign. ASCII values are compared for
Strings.

DIM ST1 AS STRING * 12

DIM ST2 AS STRING * 12

ST1 = “COMFILE"

SsT2 = “cuBLoC”

IF ST1=ST2 THEN ST2 = “OK” ' Check if STl is same as ST2.

Operators used in our BASIC language may slightly differ with actual Math
operators. Please refer to the below table:

Operator Math Basic Example
Add + + 3+4+5, 6+A
Subtract - - 10-3, 63-B
Multiply X * 2%4, AX*S5
Division —_ / 1234/3, 3843/A
To the power of 53 A 573, AN2
MOD Remainder of mod 102 mod 3

In CUBLOC BASIC, a slash (/) is used in place of division sign.
Please make sure to use parenthesis appropriately for correct calculations.

1) 5
1/2 5/(3+4
5 > - P 5/(3+4)
2+6
2+6)/(3+4)
" 4 (2+6)/(

81

Operator Priority
When multiple operators are used, the following operator priority is used:

1) Operator inside parenthesis

2) Negative Sign (=)

3) M)

4) Multiplication, Division, Remainder (*, /, MOD)
5) Addition/Subtraction (+,-)

6) Left Shift, Right Shift (<<, >>)

5+ 3% 4 (5+3) x4

%

A+B
L

-C/D+E-X=*=G+H

82

Expressing Numbers in Bits

3 ways of bit representation of numbers are possible with CUBLOC. Binary

(2 bit), Decimal (10 bit), and Hexadecimal (16 bit) can be used.

Examples of how-to:

Binary : &B10001010, &B10101,
0b1001001, 0b1l100
Decimal : 10, 20, 32, 1234
Hexadecimal : &HA, &H1234, &HABCD
0xABCD, 0x1234 & Similar to C
$1234, S$ABCD € Similar to Assembly Language

83

The BASIC Preprocessor

The BASIC preprocessor is a macro processor that is used automatically by
the compiler to transform your program before compilation. It is called a
macro processor because it allows you to define macros, which are brief
abbreviations for longer constructs.

In CUBLOC BASIC, a Preprocessor similar to C language can be used.

Preprocessor directives like #include and #define can be used to include
files and process code before compiling.

#include “filename”
Include file in the source code. For files in the same directory as the source
file, you can do the following:

#INCLUDE “MYLIB.cub”

For files in other directories, you will need to include the full path name like
shown here:

#INCLUDE “c:\mysource\CUBLOC\lib\mylib.cub”
By using include files, you can store all of your sub-routines in a separate
file.

Please make sure to use pre-processor directive #include at the very end of
your program. (After “End” for subroutines)

#define name constants
By using #define, you can define constants before compiling.

#define motorport 4

low motorport

For the example above, motorport will be compiled as 4. You can also just
use CONST for such examples like this:

CONST motorport = 4

low motorport

The following example uses #define for replacing a line of command:

84

#define FLAGREG1 2
#define f led FLAGREGI1.BITO
#define calc (4+1i)*256

f led =1 ' Set FLAGREGl's bit zero to 1.
IF £ led = 1 then £ led = 0 ' Make it easier to read.
j = calc ‘Calculations can be simplified

#define will not differentiate uppercase and lowercase letters. They will all
be processed as uppercase character. For example, #define ALPHA 0 and
#define alpha 0 are both considered the same.

85

Conditional

A conditional is a directive that instructs the preprocessor to select whether
or not to include a part of code before compilation. Preprocessor
conditionals can test arithmetic expressions, or whether a name is defined
as a macro, or both simultaneously using the special defined operator.

Here are some reasons to use a conditional.

B A program may need to use different code depending on the
module it is to run on. In some cases the code for one module
may be different on another module. With a preprocessing
conditional, a BASIC program may be programmed to compile on
any of CUBLOC/CuTOUCH modules without making changes to
the source code.

® If you want to be able to compile the same source file into two
different programs. One version might print the values of data for
debugging, and the other not.

#if constant
#endif

The preprocessor directive #if will compare a constant declared with CONST
to another constant. If the #if statement is true, the statements inside the
#if...#endif block will be compiled, otherwise statements will be discarded.

Const Device = CB280

Delay 500

' Device only returns the decimal number
#If Device = 220

Debug "CB220 module used!"

#endif

The above example shows how depending on the module of
CUBLOC/CuUTOUCH, you can decided to include a command in the final
compilation of your program. By using conditional directives, you will be
able to manage multiple modules of your CUBLOC/CuTOUCH with just one
source code.

86

By using preprocessor directive #elseif or #else, you can create more
complex #if...#endif blocks.

Const Device = CB220

Delay 500
' Device only returns the decimal number

#If Device = 220

Debug "CB220 module used!"
#elseif device = 280

Debug "CB220 module used!"
#elseif device = 290

Debug "CB290 module used!"
#elseif device = 1720

Debug "CT1720 module used!"
#endif

#else may only be used ONCE in a #if statement. You may only compare
constants declared with CONST command for the #if statements.

#ifdef name
#endif

When using #if to compare constants, you can use #ifdef to see if a
constant has been defined previously using #define or CONST.

If the constant has been defined previously, the statements inside the
#if...#endif block will be compiled, otherwise it will be discarded.

#define LOWMODEL 0

#ifdef LOWMODEL
LOW 0

#endif

In the above example, since LOWMODEL is defined, the statement LOW 0 is
compiled.
#else #elseifdef may be used for more complex blocks like shown here:

#ifdef LOWMODEL
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
Low 1
#endif

87

#ifndef name
#endif

#ifndef is exactly the opposite of #ifdef directive. If a constant has not
been defined, the statements inside #if...#endif block will be compiled,
otherwise statements are discarded.

#define LOWMODEL 0

#ifndef LOWMODEL
LOW 0

#endif

#elseifndef and #else may be used for more complex blocks like shown
here:

#ifndef LOWMODEL
Low 0
#elseifndef HIGHMODEL
HIGH 0O
#else
Low 1
#endif

Finally, the directives may be mixed as shown below:

#if MODELNO = 0
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
Low 1
#endif

An exception is that #if may not be used inside another #if.

88

To use LADDER ONLY

If you do not need to use BASIC, you can just program in LADDER. But
you will need the most basic BASIC-code as shown below:

Const Device = CB280 'Select device

Usepin 0, In, START 'Declare pins to use
Usepin 1,0ut,RELAY

Alias MO = MOTORSTATE 'Set Aliases
Alias M1 = RELAY1STATE

Set Ladder On 'Start Ladder.

Device model, aliases, and pin input and output status must be set in BASIC.
Ladder must be started in BASIC with SET LADDER ON command.

To use BASIC ONLY

Simply use BASIC! Ladder is off as default

\

Just don’t use this command.
And this one too.

Set Ladder On
Ladderscan

\

89

Interrupt

An interrupt can occur during the main program to process immediate
needs of some sort. ON..GOSUB command can be used to set a new
interrupt. When that interrupt occurs, the main program stops execution
and jumps to the label designated by the previous ON...GOSUB command.
Once the interrupt routine in the label is finished, RETURN command is used
to return back to the main program.

-V

 —
'\

\

INTERRUPT
ROUTINE

MAIN PROGRAM

External Key input, RS232 receive can happen at any moment. Since the
main program cannot wait forever to receive these inputs, we need an
interrupt. While the main program is running, if there occurs an interrupt
from key input or RS232 data receive, the interrupt routine can be used to
take care of those inputs.

CUBLOC possesses one of the most flexible interrupts in the world. While
one interrupt routine is running, another interrupt request of the same
type is ignored. If an RS232 RECV interrupt occurs while executing an
RS232 RECV interrupt routine, it will be ignored. On the other hand, if an
INT Edge interrupt occurs during execution of an RS232 RECV interrupt
routine, it will be executed immediately.

In CUBLOC, same types of interrupts are ignored if they are of the same
type. Different types of interrupts are not ignored.

Interrupt Type Explanation

On Timer Create interrupt within the set interval

On Int Create interrupt when external input is received.

On Recv Create interrupt when RS232 receives data

On LadderInt Create interrupt when Ladder Logic requests for an interrupt
On Pad Create interrupt when Pad receives data

90

Pointers using Peek, Poke,
and Memadr

Following is an example that uses EEWRITE command and EEREAD
command to read floating point data:

Const Device = CB280

Dim f1 As Single, f2 As Single
fl1 = 3.14

Eewrite 0,f1,4

f2 = Eeread(0,4)

Debug Float f2,cr

When you run this code, the debug window will show 3.00000 instead of
3.14. The reason is that EEWRITE command automatically converts
floating point values to whole numbers.

In order to store floating point values, we can use Peek and Poke to read
the data directly. The following is how we would accomplish that:

Const Device = CB280

Dim F1 As Single, F2 As Single
Fl = 3.14

Eewrite 10, Peek (Memadr (F1),4),4
Poke Memadr (F2) ,Eeread(10,4),4

Debug Float F2,CR

The Debug Window will now show 3.14.

We use Memadr(F1) to find the memory address of F1 and then use Peek
command to directly access the memory and write 4 bytes. We store that
value in EEPOM. Conversely, we use Memadr(F2) and Poke to read 4 bytes
directly.

Warning : Please use caution when using this command as pointers can

affect the whole program. Peek and Poke may only access data memory
SRAM.

91

Sharing Data

CUBLOC has individual BASIC and LADDER data memory.

BASIC DATA MEMORY LADDER DATA MEMORY

Variable B
Variable C M]
Variaple B c_____]
Variable E

D[]

LADDER data memory can be accessed from BASIC easily by using system
variables. By using these system variables, data can easily be read or
written from and to LADDER.

System Variable | Access Units LADDER Relay

(Array)

_ Bits _P(0) ~ P(127) P Relay

M Bits _P(0) ~ P(511) M Relay

_WP Words _WP(0) ~ _WP(7) P Relay (Word Access)
_WM Words _WM(0) ~ _WM(31) M Relay (Word Access)

T Words _T(0) ~ _T(99) T Relay (Timer)

_C Words _C(0) ~ _C(49) C Relay (Counter)

_D Words _D(0) ~ _D(99) D Relay (Data)

Relay P and M can be accessed in units of bits and the rest relays C, T, and
D can be accessed in units of Words. To access P and M relays in units of

Words, use _WP and _WD. For example, _WP(0) represents PO through

P15.

The following is an example program :

_D(0) = 1234
_D(1) = 3456
D(2) = 100
FOR I = 0 TO 99
_M(I) =0
NEXT
IF P(3) = 1 THEN M(127) =1

Reversely, accessing BASIC variables from Ladder is not possible but you
can use Ladder interrupts to get around this.

92

Use Ladder pins in BASIC using ALIAS command

ALIAS command can be used to set aliases for relays (all except D) used in

LADDER. Both BASIC and LADDER may freely use these set aliases.

Usepin 0, In, START
Usepin 1,0ut,RELAY
Alias MO = MOTORSTATE
Alias M1 = RELAY1STATE
Alias Tl = SUBTIMER

RELAY = 0 ' Set port 1 to LOW

MOTORSTATE = 1 ' Set MO to 1. Same as M(0) = 1.

A = RELAY1STATE ' Store M1l status in variable A.

B = SUBTIMER ' Store T1 status in variable B.

93

MEMO

94

Chapter 5

CUBLOC
BASIC functions

Math Functions

SIN, COS, TAN
Return Sine, Cosine, and Tangent values. CUBLOC uses radians as units.
Use SINGLE for most precise results.

\

A=SIN B Return Sine value.
A=COS B ' Return Cosine value.
A=TAN B ' Return Tangent value.

ASIN, ACOS, ATAN
Return Arc Sine, Arc Cosine, and Arc Tangent values. CUBLOC uses
radians as units. Use SINGLE for most precise results.
A=ASIN B ' Return Arc Sine value.
A=ACOS B
A=ATAN B

\

Return Arc Cosine value.

\

Return Arc Tangent value.

SINH, COSH, TANH

Return Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent values.

A=SINH B ' Return Hyperbolic Sine value of B.
A=COSH B ' Return Hyperbolic Cosine value of B.
A=TANH B ' Return Hyperbolic Tangent value of B.

SQR Return Square Root value.

A=SQR B ' Return square root value of B

EXP Return EX.

A=EXP X ‘Return E*.

LOG, LOG10 Return LOG or LOG10 value.

A=LOG B or A=LOGl0 B

Max’s Tips
“For natural logarithm (Ln), simply do: A= Log(B)/Log(Exp(1))"

ABS Return Absolute value.(for long type)
Dim A As Long, B As Long
B = -1234
A=ABS B ‘Return |B].
Debug Dec A ‘Print 1234

96

FABS Return Absolute value.(for Single type)

Dim A As Single, B As Single
B = -1234.0

A=FABS B ‘Return |B].
Debug Float A ‘Print 1234.00

FLOOR Round down to the whole number.

Dim A As Single, B As Single

B = 3.14
A=FLOOR B 'FLOOR 3.14 gives 3.
Debug Float A ‘Print 3.0

97

Type Conversion

Type conversion can be used to convert the variable to desired bit
representation.

HEX

Converts the variable to hex (16 bit). HEX8 means to convert to 8 decimal
places. (1 to 8 can be used for decimal places)

DEBUG HEX A ‘if A is 123ABC, 123ABC is printed

DEBUG HEX8 A ‘if A is 123ABC, bbl23ABC is printed,
' b is a blank space in this case.

DEBUG HEX5 A ‘if A is 123ABC, 23ABC is printed, first character
‘is cut.

DEC

Converts the variable to a decimal (10 bit). DEC8 means to convert to 8
decimal places. (1 to 11 can be used for decimal places)

DEBUG DEC A ‘'If A is 1234, 1234 is printed.

DEBUG DEC10 A If A is 1234, bbbbbbl234 is printed,
b is a blank space in this case.

If A is 1234, 234 is printed, first
character is cut

DEBUG DEC3 A

?

Include the name of the variable by using question mark (?). This question
mark can only be used with HEX or DEC.

DEBUG DEC ? A
DEBUG HEX ? A
DEBUG HEX ? B

If A is 1234, “A=1234" will be printed.

If A is ABCD, “A=ABCD” will be printed.

If B is a sub-routine variable let’s say of
sub-routine CONV, “B @ CONV=ABCD”

will be printed. (B is in CONV)

FLOAT
Use FLOAT to convert floating point values to String.

Const Device = cb280
Dim F1 As Single

Fl = 3.14

Debug Float Fl,cr ' Print "3.14000".

Dim ST As String * 15

ST = Float F1 ' First store in a String.

ST = Left (ST, 3) ' Convert to 3 decimal places
Debug ST ' Print "3.14".

98

String Functions

String Ructions are provided to assist the user in accessing data within the
String.

DP(Variable, Decimal Places, ZeroPrint)
The command DP converts Variable into decimal String representation.

If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Dim A as Integer

DEBUG DP (A,10,0) ' Convert A into decimal String representation.
' Set display decimal places to 10.

‘'If A is 1234, bbbbbl234 will be displayed.
' (b stands for blank spaces.)

DEBUG DP (A,10,1) ‘'If A is 1234, 0000001234 will be displayed.

HP(Variable, Decimal Places, ZeroPrint)
This command HP converts Variable into hexadecimal String representation.
If ZeroPrint is set to 1, zeroes are substituted for blank spaces.

DEBUG HP (A, 4,0) ' Convert A into HEX String representation
' Set display decimal places to 4.

If A is ABC, bABC will be displayed.

(b stand for blank spaces.)

DEBUG HP (A, 4,1) ‘'If A is ABC, OABC will be displayed.

\

LEFT(Variable, Decimal Places)
Cut specified decimal places of the String from the left side and return the
value.

DIM ST1 AS STRING * 12
sT1 = “cuBLoc”
DEBUG LEFT(ST1,4) ' “CUBL” is printed.

RIGHT(Variable, Decimal Places)
Cut specified decimal places of the String from the right side and return the
value.

DIM ST1 AS STRING * 12
sT1 = “cuBLOC”
DEBUG RIGHT (ST1, 4)

v wn

BLOC” is printed.

99

MID(Variable, Location, Decimal Places)
Cut specified decimal places starting from the Location specified and return
the value.

DIM ST1 AS STRING * 12
ST1 = “cuBLOC”
DEBUG MID(ST1,2,4)

LR

UBLO” is printed.

LEN(Variable)
Return the length of the String specified.

DIM ST1 AS STRING * 12
ST1 = “cuBLOC”
DEBUG DEC LEN(ST1) ‘6 is printed since there are 6 characters in ST1.

STRING(ASCII code, length)
Create a specified length String with specified ASCII code value.

DIM ST1 AS STRING * 12
ST1 = STRING(&H41,5)
DEBUG ST1 ‘AAAAA is printed. &H41l is ASCII code for character A.

SPC(decimal places)

Create specified amount of blank space

DIM ST1 AS STRING * 12
ST1 = SPC(5)
DEBUG “A”,ST1,"A"” ‘AbbbbbA is printed. Here, b is for blank space.

LTRIM(String variable)

Cut all blank spaces on the left side of the String and return the value.

DIM ST1 AS STRING * 12

ST1 = COMFILE”
ST1 = LTRIM(ST1)
DEBUG “AAA",ST1

\

AAACOMFILE is printed.

RTRIM(String variable)

Cut all blank spaces on the right side of the String and return the value.

DIM ST1 AS STRING * 12
ST1 = “COMFILE "
ST1 = RTRIM(ST1)
DEBUG ST1,"TECH” ' COMFILETECH is printed.
' Blank spaces on the right are removed.

100

VAL(String variable)

Return a converted numerical value of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER

ST1 = “123”
I = VAL(ST1) ' 123 is stored in variable I as a number.

VALSNG(String variable)

Return a converted floating point numerical value of the String.

DIM ST1 AS STRING * 12
DIM F AS SINGLE

ST1 = “3.14"
F = VALSNG (ST1)

' 3.14 is stored in variable F as a floating

' point number.

CHR(ASCII code)

Return the character of desired ASCII code.

DIM ST1 AS STRING * 12
ST1 = CHR(&H41)
DEBUG ST1 ' Print A,. &H41 is ASCII code of character A.

ASC(String variable or Constant)
Return the converted ASCII code of the first character of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER

ST1 = “123”
I = ASC(ST1)

\

&H31 is stored in variable I. ASCII code of 1
' is &H31 or 0x31.

101

Caution 1
A variable must be used when using string functions.

\

DEBUG LEFT (“INTEGER”, 4)
ST1 = “INTEGER”
DEBUG LEFT (STL1,4) ' A string must be stored as a variable first.

A string by itself cannot be used.

Caution 2
Please use a constant for the 2nd parameter of string functions LEFT, RIGHT,
MID

DEBUG LEFT (Al,K) ‘Variable K cannot be used.
DEBUG LEFT (Al, 5) ‘A constant must be used.

102

Chapter 6
CUBLOC
BASIC
Statements
& Library

Adin()

Variable = ADIN (Channel)
Variable : Variable to store results (No String or Single)
Channel : AD Channel Number (not I/O Pin Number)

CUBLOC has 10bit ADCs and 16bit PWMs. The user can use ADC to convert
analog to digital signals or use PWM to convert digital to analog signal.

ADIN command reads the analog signal value and store the result in a
variable. Depending on the model, the number of AD ports may vary. For
the CB280, there are 8 AD ports (P24~P31). The AD port must be set to
input before use.

When voltage between 0 and AVREF in inputted, that voltage is converted
to a value from 0 to 1023. AVREF can accept voltage between 2~5 V.
Generally, 5V is used. If the user inputs 3V to AVREF, voltage between 0
and 3V is converted to a value between 0 and 1023.

(*Note: CB220 AVREF is fixed to 5V)

Return value

A
1023 ,

0 >
oV 5v Inputvoltage

Dim A As Integer

Input 24 Set pin to input.

A=Adin (0) ' Do a A/D conversion on channel 0 and
' store result in A

\

104

The following is AD input ports shown according to the model.

sout O 1 2403 VIN
SIN [2 2300 vss
ATN O 3 2271 RES
vss O 4 2103 vDD
PO O5 2003 P15
P1 06 190 P14
P2 07 18[00 P13
AD INPUT P3 O8 170 P12
PORT P4 9 1603 P11
P5 [10 150 P10
P6 O] 11 140 P9
P7 O 12 1301 P8
SouT | 1@ @17 VDD 1 TTLTX1
RX1 TTLRX1
AVDD AVREF
N/C P48
P24 P31
P25 P30 AD INPUT
P26 P29
P27 P28 PORT
P47 P32
P46 P33
P45 P34
P44 P35
P43 P36
P42 P37
P41 P38
P11 |16 @ @32 P12 P40 P39

Please refer to the table below for AD channels.

Channel/Model CB220 CB280 CB290 CT17X0
A/D channel 0 1I/00 1/0 24 1/08 /00
A/D channel 1 /01 1/0 25 1/09 /01
A/D channel 2 /02 1/0 26 1/0 10 /02
A/D channel 3 /03 1/0 27 1/0 11 1/0 3
A/D channel 4 /04 1/0 28 1/0 12 /0 4
A/D channel 5 /05 1/0 29 1/0 13 1/05
A/D channel 6 1/0 6 1/0 30 1/0 14 /06
A/D channel 7 /07 1/0 31 1/0 15 1/07

ADIN command only converts once upon execution. In comparison TADIN
returns the average of 10 conversions, there by giving the user more
precise results. If you need more precision, we recommend the use of
TADIN instead of ADIN.

105

Alias

ALIAS Relayname = AliasName
Relayname : Relay name such as PO, MO, TO (Do not use D area)
AliasName : An Alias for the Relay chosen (up to 32 character)

Aliases may be made up for relays like PO, MO, CO. With Aliases, the user
will be able to write more clear and easy-to-read code.

Alias MO Rstate
Alias MO = Kstate
Alias PO = StartSw

106

Bcd2bin

Variable = BCD2BIN(bcdvalue)
Variable : Variable to store results (Returns LONG)
bcdvalue : BCD value to convert to binary

This command does the exact opposite of BIN2BCD command.

Dim A As Integer
A=Bcd2bin (&h1234)
Debug Dec A ' Print 1234

107

Bclr

BCLR channel, buffertype
channel : RS232 Channel (0~3)
buffertype : 0=Receive, 1=Send, 2=Both

Clear the specified RS232 Channel’s buffer. Buffer type can be chosen.

\

Bclr 1,0 Clear RS232 Channel 1's rx buffer
Bclr 1,1 ' Clear RS232 Channel 1’'s tx buffer
Bclr 1,2 ' Clear RS232 Channel 1's rx & tx buffers

108

Beep

BEEP Pin, Length
Pin : Pin number (0~255)
Length : Pulse output period (1~65535)

The BEEP command is used to create a beep sound. Piezo or a speaker can
be connected to the pin. A short beep will be outputted. This is useful for
creating Key touch sound effects or alarm sounds. When this command is
used, the specified pin is automatically set to output.

BEEP 2, 100 ‘Output BEEP on P2 for a period of 100

- =

109

Bfree()

Variable = BFREE(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0~3)
buffertype: O=Receive Buffer, 1=Send Buffer

This function will return the number of free bytes that either receive buffer
or send buffer has currently. For sending data, this command can be used
to avoid overflowing the buffer.

DIM A AS BYTE
OPENCOM 1,19200,0, 100, 50
IF BFREE(1,1)>10 THEN

PUT “TECHNOLOGY”
END IF

If buffer size is set to 50, up to 49
free bytes can be returned. The
function will return 1 less than the
set buffer size when buffer is empty.

110

Bin2bcd

Variable = BIN2BCD(binvalue)
Variable : Variable to store results (Returns Long)
binvalue : Binary value to be converted

This command BIN2BCD converts binary value to BCD code. BCD code is a
way of expressing binary values as decimals.

For example. 3451 in binary is as shown below:

3451

0000 1101 0111 1011

0 D 7 B

The below is 3451 converted to BCD code. As you can see, each 4 bits
represent one of the digits.

3451

0011 0100 0101 0001

3 4 5 1

This command is useful when the user needs to convert a variable to be
representable in a device such as the 7 segment display.

i = 123456
j = bin2bcd (i)
Debug Hex j ' Print 123456

111

Blen()

Variable = BLEN(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0~3)
buffertype: O=Receive Buffer, 1=Send Buffer

This function Blen() returns current number of bytes of data in the specified
RS232 Channel’s buffer. If the buffer is empty, 0 will be returned. When
receiving data, this function can be used to check how much data has been
received before using GET or GETSTR to read the data received.

If the receive buffer is full, it will not be able to receive any more data. To
avoid these situations, receive interrupts should be used or plenty of receive
buffer size should be used.

Dim A As Byte

Opencom 1,19200,0,100,50

On Recvl DATARECV_RTN ' When data is received through
' RS232, jump to DATARECV_RTN

Do

Loop ' infinite loop

DATARECV_RTN:

If Blen(1,0) > O Then ' If there is at least 1 byte...
A = Get (1) ' Read 1 Byte
End If
Return ' End Interrupt routine

112

Bytein()
Variable = BYTEIN(PortBlock)

Variable : Variable to store results (No String or Single)
PortBlock : I/O Port Block Number (0~15)

Read the current status of the I/O Port Block. 8 I/O pins(ports) are
collectively called as a Port Block. Pin 0~7 is Block 0 and Pin 8~15 is Block
1. Depending on the model of CUBLOC, the Port Block nhumber can vary.
When using this command, all I/O pins within the Port Block are set to input
and the received input value is stored in a variable..

DIM A AS BYTE
A = BYTEIN(O) ‘Read from Port Block 0 and store in variable A.

The following is how Port Blocks are set according to the CUBLOC model.

souT O 1 240 VIN
sIN O 2 230 vss
ATN [3 22[] RES
vss [4 21 vbD
PO s 2003 P15
P16 190 P14
P27 18 P13
BLOCKO P38 170 P12 BLOCK 1
Pa o 16 P11
P5 O 10 1500 P10
Pe O 11 140 P9
P7 O 12 1300 P8
SouT | 1® @ 17 VDD ™1 TTLTX4
SIN| 2@ @ 18 vss RX1 TTLRX1
ATN | 3@ @ 19 RES AVDD AVREF
vss| 4@ @20 NiC N/C P48
PO 5@ @21 Pl [P B3l
Pi|6® @22 P17 P25 P30 3
P2| 7@ @23 P18 [P (P9
0 P3| 8@ @24 P19 2 B2l 28
Pa| 9@ @25 P20 P47 P32
P5|10@ @ 26 P21 P46 P33
P6 |11@ @27 P22 P45 P34
P7 [12@ @ 28 P23 5 P44 P35 4
P8 |13@ @29 P15 P43 P3g
P9 |14@ @30 P14 P42 pPa7
1 P10 [15@ @ 31 P13 P41 P38
P11 [16@® @32 P12 P40 P39

113

Byteout
BYTEOUT PortBlock, value
PortBlock : I/O Port Block Number. (0~15)
value : Value to be outputted between 0 and 255.

Output the value to a Port Block. 8 I/O pins(ports) are collectively called as
a Port Block.

Pin 0~7 is Block 0 and Pin 8~15 is Block 1. Depending on the model of
CUBLOC, the Port Block number can vary. When using this command, all
I/0 pins within the Port Block are set to output and the value is outputted.

Byteout 1,255 ' Output 255 to Port Block 1.
' Pins 8 through 15 are set to HIGH.

* 1/0 pin 1 only supports input. Therefore, BYTEOUT 0 will not set pin 1 to
Output.

114

CheckBf()

Variable = CheckBf(channel)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel (0~3)

Without affecting the RS232 receive buffer, the command CheckBf() can be
used to check the current data in the receive buffer. Although it will read

what is in the buffer, it will not erase the data after reading unlike the GET
command. Only 1 byte can be read at a time.

A = Checkbf (1) ‘Check current data in the receive buffer

115

Count()

Variable = COUNT(channel)
Variable : Variable to store results. (No String or Single)
Channel : Counter Channel number (0~3)

Return the counted value from the specified Count Channel. Please set the
Counter Input pins to input before use of this command.

Up to 32bits can be counted. (Byte, Integer, Long) Maximum frequency is
500kHz.

CUBLOC's counter is hardware driven, meaning it runs independently from
the main program. It is able to count in real-time. No matter how busy
the CUBLOC processor gets, counter will count reliably.

CUBLOC has 2 Counter inputs. Counter Channel 0 uses same resources as
PWMO, 1, 2 and cannot be used together. But you are free to use Counter
Channel 1 as freely as you'd like. To use Counter Channel 0, SET COUNTO
command must be used beforehand. Channel 1 requires no additional
settings.

sout g1 >~ 24P vIN
SIN [2 23 vss
ATN 3 22[1 RES
vss [4 21 vDD
PO 05 200 P15 +—— COUNT 1
P1 O6 190 P14 «—— COUNTO
P27 18 P13
P3 8 173 P12
P4 o 163 P11
P5] 10 153 P10
P6 [11 140 P9
P7 O 12 130 P8

Dim R As Integer
Input 15
R = Count (1)

Set port 15 as input. (Counter Channel 1)
Read current Counter value.

Activate Counter Channel 0

(PWMO, 1,2 becomes deactivated.)

Set port 14 as input (Counter Channel 0)
Read current Counter value.

Set Count0O On

Input 14
R = Count (0)

116

Since counter 0 uses the same resources as Pwm as shown below, please
be careful. Not to use PWM at the same time.

COUNTERO

j

TIMERA

TIMERB WM4

ol || |T ol |T
FE II Hi : ii
= = = IE
(&} w N =

' Mesure fregence from pulse output PWM 0 channel
Const Device = CB280

Dim A as Integer

Input 15

Low 5

Fregout 0,2000

Low 0

On Timer (100) Gosub GetFreq

Do

Loop

GetFreq:

A = Count (1)
Debug goxy, 10,2
Debug dec5 A
Countreset 1
Reverse 0
Return

117

Countreset

COUNTRESET channel
Channel : Counter Channel (0~3)

Reset the specified Counter Channel to 0.

Countreset 0 ‘Clear Channel 0
Countreset 1 ‘Clear channel 1

118

Dcd

Variable = DCD source
Variable : Variable to store results. (No String or Single)
Source : source value

This command DCD is opposite of NCD command.
It will return the bit position(starting at LSB bit 0) of the highest bit that is a
1.

I = DCD 15 ' Result is 3 since 15 = 0b00001111

119

Debug

DEBUG data
data : data to send to PC

CUBLOC supports DEBUG command by allowing the user to insert DEBUG
commands as he wishes during the execution of a program.

The results of DEBUG commands inserted in the source code is displayed on
the DEBUG Terminal.

DIM A AS INTEGER +* Debug Terminal =13l
_ Fort Baud Rate Parity DataBits g1y ﬁ n
A =123 [com =] [r15200 =] uone =] [8 =] @rx

DEBUG DEC A

Use DEC or HEX to display numbers. Without DEC or HEX, the numbers
will be printed as ASCII codes. Please use DEC or HEX for variables to see

the actual values.
If you insert question mark (?) before DEC or HEX, the variable’s name will

be printed together.

« Debug Terminal - 10l =l

Fort Baud Rate Parity Data Bits @TH ﬁ n
DEBUG HEX? R, CR fcom | fr15200 =| fnere] e ¥ @mx

DEBUG DEC? A,CR

120

You can also use numbers to limit the number of decimal places to print.

DEBUG HEX8 A

+ Debug Terminal =10] =]
Port Baud Rate Parity Data Bits BTH ﬁ n

Jeomt = [115200 =] [wore ¥ e =] @Ry

1 through 8 can be used with HEX. HEX8 will print as 8 digit hexadecimal
number. 1 through 10 can be used with DEC.

You are free to mix strings, numbers, and etc...

w

DEBUG “CHECK VALUE “ HEX? A, CR
+ Debug Terminal =13 x|
Part Baud Rate Parity Data Bits @TH ﬁ n

Jeomt x| 115200 x| frone =| 6 x| g
|

CHECE VALUE A4=7B

DEBUG command is useful for printing out strings and numbers in a user
friendly format. During execution of CUBLOC BASIC program, when
DEBUG command is encountered, the resulting values are displayed on the
DEBUG Terminal.

121

If you insert a DEBUG command to a certain part of the program and the
DEBUG Terminal displays the values during execution, it proves that the
program has executed to that point. By using these DEBUG commands,
you will be able to find bugs in your program and monitor variables change
in real-time.

If you enter character in the white part of the Debug Terminal, it will be
sent to the DOWNLOAD port of CUBLOC. We have added this feature for
future/advanced development.

Warning

DEBUG command may not be used while monitoring in Ladder Logic.
Likewise, Ladder Logic monitoring can not be used while debugging using
DEBUG commands.

The following is a chart of commands that can be used with the DEBUG
command. You can control the DEBUG screen just like a real LCD.

Command Code Explanation Example Usage
CLR 0 Clear Debug screen Debug CLR
HOME 1 Move cursor to the upper left corner of | Debug HOME
the Debug screen
GOXY 2 Move cursor to X, Y Debug GOXY, 4, 3
CSLE 3 Move cursor one to the left.
CSRI 4 Move cursor one to the right
CSUP 5 Move cursor one up
CSDN 6 Move cursor one down
BELL 7 Make beeping sound
BKSP 8 BACK SPACE
LF 10 LINE FEED Debug “ABC”",LF
CLRRI 11 Erase all characters on the right of
cursor to the end of line.
CLRDN 12 Erase all characters on the bottom of
cursor
CR 13, 10 | Carriage Return (go to next line) Debug, "ABC",CR

You must use above commands in line with the DEBUG command.

Debug Goxy,5,5,Dec I
Debug Clr,”TEST PROGRAM”

122

Decr

DECR variable
Variable : Variable for decrementing. (No String or Single)

Decrement the variable by 1. (similar to “A - -" in C language)

Decr A ' Decrement A by 1.

123

Delay
DELAY time
Time : interval variable or constant

Delay for the specified time in milliseconds. Delay should be only used for
slight delays in getting something to work. We recommend not using it for
time measurements and time-specific applications.

Delay 10 ' Delay about 10 ms.
Delay 200 ' Delay about 200 ms.

Delay is pre-made system’s sub program.

sub delay(dl as long)
dll var long
dl2 var integer
for d11=0 to dl
for di12=0 to 1
nop
nop
nop
next
next
end sub

124

DOIIILoop

DO...LOOP will loop the commands within itself unless DO WHILE or DO
UNTIL is used to set a condition in which DO...LOOP can be terminated.
EXIT DO command can also be used within the DO...LOOP to exit from the
loop.

Do
Commands
Loop

Dim K As Integer

Do
K=Adin (0) ‘Read AD input from channel 0
Debug Dec K, Cr
Delay 1000

Loop

In the above example, the program will loop infinitely within DO and LOOP.
EXIT DO or GOTO command must be used to get out of the infinite loop.

Do While [Condition]

Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]

Loop While [Condition]

DO..WHILE will infinitely loop until condition in WHILE is met.

Do Until [Condition]

Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]

Loop Until [Condition]

DO..UNTIL will infinitely loop until condition in UNTIL is met.

125

Dtzero
DTZERO variable
Variable : Variable for decrement. (No String or Single)

Decrement the variable by 1. When variable reaches 0, the variable is no
longer decremented.

DTZERO A ' Decrement A by 1.

126

Eeread()

Variable = EEREAD (Address, BytelLength)
Variable : Variable to store result (No String or Single)
Address : 0 ~ 4095
BytelLength : Number of Bytes to read (1~4)

Read data from the specified address in EEPROM.

DIM A AS INTEGER

DIM B AS INTEGER

A = 100

EEWRITE 0,A,2 ' Store A in Address 0.

B = EEREAD(0,2) ' Read from Address 0 and store in B.

127

EAdin()

Variable = EADIN (mux)

Variable : Variable to store results (No String or Single)

mux : AD input pin Combination MUX (0~21)

This command is used for a more precise AD conversion.
internal OPAMP. When using ADIN command, the OPAMP is not used. By
using this command EAdin, the user can utilize the OPAMP for more precise

results.

-t

OP AMP.

ADC

CUBLOC has an

Please set the MUX value accordingly by following the chart below:

MUX OPAMP + OPAMP - Multiplier
0 ADCO ADCO 10
1 ADC1 ADCO 10
2 ADCO ADCO 200
3 ADC1 ADCO 200
4 ADC2 ADC2 10
5 ADC3 ADC2 10
6 ADC2 ADC2 200
7 ADC3 ADC2 200
8 ADCO ADC1 1
9 ADC1 ADC1 1
10 ADC2 ADC1 1
11 ADC3 ADC1 1
12 ADC4 ADC1 1
13 ADC5 ADC1 1
14 ADC6 ADC1 1
15 ADC7 ADC1 1
16 ADCO ADC2 1
17 ADC1 ADC2 1
18 ADC2 ADC2 1
19 ADC3 ADC2 1
20 ADC4 ADC2 1
21 ADC5 ADC2 1

128

The EADIN port must be set to input beforehand. By using the OPAMP,
more precise results or a noise-filtering effect can be obtained.

Dim J As Long

Input 24 'Set the port to input (Use port 24,25 for CB280)
Input 25
Do
j = Eadin(8) ' AD Conversion from ADO and Adl, use OPAMP, 1
Locate 0,0
Print hex5 J,cr ' Print results to LCD
Delay2 500 ' Little Delay
Loop
End

Sub Delay2 (DL As Integer)
Dim I As Integer
For I = 0 To DL
Next

End Sub

129

Eewrite

EEWRITE Address, Data, Bytelength
Address : 0 to 4095
Data : Data to write to EEPROM (up to Long type values)
BytelLength : Number of Bytes to write (1~4)

Store data in the specified Address in EEPROM.

Dim A As Integer
Dim B As Integer

A = 100
Eewrite 0,A,2 ' Store A in Address 0.
B = Eeread(0,2) ' Read from Address 0 and store in B.

When writing to the EEPROM, it takes about 3 to 5 milliseconds.
When reading from the EEPROM, it takes less than 0 milliseconds.
There is a physical limit of around 100,000 writes to the EEPROM.

If you are using EEPROM for data acquisition or data that requires a lot of
writes, we rather recommend use of the data memory with backup battery

included modules such as the CB290.

The following is a table showing comparisons betweens SRAM and EEPROM.

Type Battery Backup SRAM EEPROM

Life of Data 3 Months to 1 Year 40 Years
(Depending on Battery
Capacity)

Maximum Writes Infinite About 100,000

Writing Time 0 ms 3to5ms

General use Backup Necessary Equipment | Small amount of data to
in the case of power outage. record.
Example) Production Line | Long data life requirement.
Counter Example) Product Serial

Number

130

Ekeypad

Variable = EKEYPAD(portblockin, portblockOut)
Variable : Variable to store results (Returns Byte)
Portblockin : Port Block to receive input (0~15)
PortblockOut : Port Block to output (0~15)

This command EKEYPAD extends KEYPAD to read up to 64 key inputs. Two
Port Blocks can be used to read up to 64 key inputs. Input Port Block and
output Port Block must be selected separately.

For ports not used within the input Port Block, a resistor must be connected
to 5V. This pin may not be used for other purpose when using this
command.

For ports not used within the output Port Block, they can be left in OPEN
state. This pin also may not be used for other purposes. The following is
an example of using Port Block 0 as input and Port Block 1 as output.

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

131

For...Next

FOR...NEXT will loop the commands within itself for a set amount of times.

For Variable = Starting Value To Ending Value [Incremental Step]
Commands
[Exit For]

Next

In the below example, Incremental Step is not set. FOR...NEXT loop will
increment 1 every loop as default.

Dim K As Long
For K=0 To 10

Debug Dp (K),CR
Next
For K=10 To 0 Step -1 *
Debug Dp (K),CR

Negative Step, step from 10 to O.

Next

EXIT FOR command can be used within the FOR..NEXT loop to exit any
desired moment.

For K=0 To 10
Debug Dp (K),CR

If K=8 Then Exit For ' If K equals 8 exit the FOR..NEXT loop.
Next

When choosing a variable to use for FOR...NEXT loop, please make sure the
chosen variable is able to cover desired range. Byte variables can cover
from O to 255. For larger values, a variable with larger range must be
chosen.

Dim K As Byte
For K=0 To 255

Debug Dp (K),CR
Next

When using negative STEP, please choose LONG as it can handle negative
numbers.

Dim LK As Long

For LK=255 To 0 Step -1 ‘This will reach -1 as last step
Debug Dp (LK) ,CR
Next

132

Freqout

FREQOUT Channel, FreqValue
Channel : PWM Channel (0~15)
FreqValue : Frequency value between 1 and 65535

Output desired frequency to the desired PWM channel. Please make sure
to specify the PWM channel, not I/O port number. For CB220 and CB280,
ports 5,6, and 7 are PWM Channel 0,1, and 2, respectively.

The following is a basic chart showing the different FregValues and
corresponding frequencies. 1 is for the highest possible frequency and
65535 is for the lowest possible frequency. 0 does not produce any output.

FregValue Frequency FregValue Frequency

1 1152 KHz 200 11.52 KHz

2 768 kHz 1000 2.3 KHz

3 576 KHz 2000 1.15 KHz

4 460.8KHz 3000 768 Hz

5 384 KHz 4000 576 Hz

10 209.3 KHz 10000 230 Hz

20 109.7 KHz 20000 115.2 Hz

30 74.4 KHz 30000 76.8 Hz

100 22.83 KHz 65535 35.16 Hz

You can also calculate the FreqValue to use by using the following formula:
FreqValue = 2304000 / Desired Frequency

Before using this command, please set the specified PWM pin to output
mode. To stop PWM, you can use the command PWMOFF.
The following is an example:

Const Device = cb280
Dim i As Integer

Low 5 ' Set pin 5 to low and output.
i=1

Freqout 0,10 ' Produce a 209.3Khz wave

Do ' Infinite loop

Loop

Since Freqout uses the same resources as PWM, there are a couple of
restrictions you must be aware of. PWM Channel 0,1, and 2 use the same
timer. If PWM Channel 0 is used for Freqout command, channel 0,1, and 2
all cannot be used for PWM command.

133

Likewise, PWM Channel 3, 4, and 5 act the same.

If you use Freqgout on

PWM Channel 3, PWM Channels 3, 4, and 5 cannot be used for PWM

command.

You can product different frequencies on PWM Channel 0 and 3.

To sum up, the user may produce two different frequencies at one time and
when using the Freqout command, the PWM command cannot be used.

The following is a chart that shows corresponding FreqValue to the music

notes.
Note Octave 2 Octave 3 Octave 4 Octave 5
A 20945 10473 5236 2618
Bb 19770 9885 4942 2471
B 18660 9330 4665 2333
C 17613 8806 4403 2202
Db 16624 8312 4156 2078
D 15691 7846 3923 1961
Eb 14811 7405 3703 1851
E 13979 6990 3495 1747
F 13195 6597 3299 1649
Gb 12454 6227 3114 1557
G 11755 5878 2939 1469
Ab 11095 5548 2774 1387
Freqout 0,5236 Note A in Octave 4 (440Hz)

Freqgout 0,1469

in Octave 5

134

Get()

Variable = GET(channel, length)
Variable : Variable to store results (Cannot use String, Single)
channel : RS232 Channel (0~3)
length : Length of data to receive (1~4)

Read data from RS232 port. This command Get() actually reads from the
receive buffer. If there is no data in the receive buffer, it will quit without
waiting for data.

The command BLEN() can be used to check if there is any data in the
receive buffer before reading trying to read data.

The length of data to be read must be between 1 and 4. For receiving a
Byte type data, it would be one. For receiving a Long type data, it would
be 4. For larger data, please use GETSTR().

TIPS
Use SYS(1) after GET() or GETSTR() to verify how much data was actually
read. If 5 bytes were received and only 4 bytes got verified, 1 byte was lost.

Const Device = cb280

Dim A as Byte

Opencom 1,115200,3,50,10

On Recvl gosub GOTDATA

Do
Do while In(0) = 0
Loop ' Wait until press button (Connect P0)
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,13,1 ' HELLO + chr (13) + chr (10)
put 1,10,1
Do while In(0) = 1
Loop

Loop

GOTDATA:
A=Get (1,1)
Debug A
Return

135

Getstr()

Variable = GETSTR(channel, length)
Variable : String Variable to store results
channel : RS232 Channel
length : Length of data to receive

Same as Get() except the variable to store results can only be String and
length of data is not limited.

Const Device = cb280

Dim A As String * 10

Opencom 1,115200,3,50,10

Set Until 1,8

On Recvl Gosub GOTDATA

Do
Do While In(0) = 0
Loop ' Wait until press button (Connect PO)
Putstr 1,"CUBLOC",Cr
Do While In(0) =1
Loop

Loop

GOTDATA:
A=Getstr (1, 8)
Debug A
Return

CcB280

/100 |——

TTLRX TTLTX T

136

Geta

GETA channel, ArrayName, bytelength
channel : RS232 Channel (0~3)
ArrayName : Array to store Received data (No String or Single)
Bytelength : Number of Bytes to store (1~65535)

The command Geta can be used to store received RS232 data into a Byte
array. Data will be stored starting from the first element of the array.
Again, please check the receive buffer with BLEN() before reading to avoid
reading garbage data.

Const Device = cb280

Dim A(10) As Byte

Opencom 1,115200,3,50,10

Set Until 1,8

On Recvl Gosub GOTDATA

Do
Do While In(0) = 0
Loop ' Wait until press button (Connect PO
Putstr 1, "CUBLOC",Cr
Do While In(0) = 1
Loop

Loop

GOTDATA:
Geta 1,A,8
Debug A(0) ,A(1),A(2),A(3),A(4),A(5),A(6),A(7)
Return

CcB280

Voo |—"——

TTLRX TTLTX T

137

Gosub..Return

GOSUB command can call a sub-routine. RETURN command must be used
at the end of the sub-routine.

GOSUB ADD VALUE

ADD VALUE:
A=A+1
RETURN

Goto

GOTO command will instruct the current Program to jump to specified label.
This is part of every BASIC language but we do not recommend the use of
GOTO as it can interfere with structural programming.

If I = 2 Then
Goto LAB1
End If
LABl:
I=3

About Label...
A Label can be set with character *:’ to set a point for GOTO or GOSUB to
jump to.

ADD VALUE:
LINKPOINT:

A label cannot use reserved constants, numbers, or included a blank space.
Below are some not-to-do examples:

Ladder: ‘Reserved constant
123: ‘Number .
Aboot 10: ‘Blank space.

138

High
HIGH Pin
Pin : I/O pin number

Set the pin to HIGH state. This command sets the pin to output state and
outputs HIGH or 5V.

OUTPUT 8 ‘Set pin 8 to output state.
HIGH 8 ‘Set pin 8 to HIGH (5V).

When a port is set to High, the port is internally connected to VDD, whereas
if it's set to Low, the port is internally connected to VSS.

139

I2Cstart

12CSTART

Set I2C SDA and SCL to Start mode. After this command, SDA and SCL go
LOW.

SDA

SCL

START

I2Cstop

12CSTOP

Set I12C SDA and SCL to Stop mode. After this command, SDA and SCL go
HIGH.

SDA

SCL

L

STOP

140

I2Cread()

Variable = I2CREAD(dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

Read a byte from the I2C pins set by SET I2C command. Use any value for
dummy value.

A = I2CREAD (0)

I2Cwrite()

Variable = 2CWRITE data
Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)
data : data to send (Byte value : 0~255)

Send one byte of data through I2C. This command creates Acknowledge
pulse and returns O if there is acknowledgement and 1 if there isn't. If
there is no acknowledgement, it could mean two things. Either I2C lines
are not connected properly or power is not supplied correctly. In case this
happens, please setup an error processing function such as below:

IF I2CWRITE (DATA)=1 THEN GOTO ERR PROC

When you don't need to check for acknowledgement you can just use any
variable to receive the acknowledgement as shown below:

A = I2CWRITE (DATA)

One byte of data transfer takes approximately 60 micro-seconds.
Please refer to Chapter 8 “About I2C...” for detailed I2C communications
description.

141

If..Then..Elseif...Endif

You can use If..Then..Elseif...Else...EndIf conditional statements to set
conditions for your program.

If Conditionl Then [Expressionl]
[Expression2]

[Elseif Condition2 Then
[Expression3]

[Else
[Expression4]]

[End If]

Usage 1
If A<10 Then B=1

Usage 2
If A<10 Then B=1 Else C=1
Usage 3
If A<10 Then '* When using more than 1 line of if,
B=1 ‘* do not put any Expressions after “Then”.
End If
Usage 4
If A<10 Then
B=1
Else
c=1
End If
Usage 6
Usage 5 If giﬁO Then
IE A<IO Then Elseif A<20 Then
: c=1
<
Elgfff A<20 Then Elseif A<40 Then
Cc=2
End If Else
D=1
End If

142

In()

Variable = IN(Pin)
Variable : The variable to store result (No String or Single)
Pin : I/O pin number (0~255)

Read the current state of the specified pin. This function reads the state of
the I/O pin and stores it in the Variable. When you execute this command,
CUBLOC will automatically set the pin to input and read the status. You do
not need to use Input command to set the pin beforehand when using this
command.

DIM A AS BYTE

A = IN(8) ' Read the current state of pin 8

and store in variable A(0 or 1)

\

TIPS

All CUBLOC I/O ports support both input/output. You have many options in
setting the pin status to input or output. By default, all I/O pins are set to
HIGH-Z at power ON.

When pin is set to output, it will either output HIGH or LOW signal. HIGH is
5V and LOW is OV or GND (ground).

143

Incr

INCR variable
Variable : Variable for increment. (No String or Single)

Increment the variable by 1.

INCR A ‘Increment A by 1.

144

Input
INPUT Pin
Pin : I/O pin number (0~255)

Set the specified pin to High-Z (High Impedance) input state.
All I/0O pins of CUBLOC module are set to HIGH-Z input as default at power
ON.

High Impedance means that the value of resistor is so high that it's neither
HIGH nor LOW.

INPUT 8 ‘Set pin 8 to HIGH-Z input state.

145

Keyin

Variable = KEYIN(pin, debouncingtime)
Variable : Variable to store results (No String or Single)
Pin : Input Pin (0~255)
deboucingtime : Debouncing Time (1~65535)

This command KEYIN removes bouncing effect before reading the input.
You can use KEYIN only when inputting LOW ACTIVE as shown below. For
inputting HIGH ACTIVE, please use KEYINH. When there’s input, Keyin will
return 0 and 1 when there isn't.

If you use 10 for deboucing time, CUBLOC will check input for bouncing for
10 ms. Bouncing usually lasts around 10ms, so our recommendation is
10ms for most applications

A = KEYIN(1,10) ‘Read from port after removing bouncing effect.

/ Bouncing effect

1

i
Keyinh

Variable = KEYINH(pin, debouncingtime)
Variable : Variable to store results (No String or Single)
Pin : Input Pin (0~255)
deboucingtime : Debouncing Time (0~65535)

KEYINH is for HIGH ACTIVE inputs. For LOW ACTIVE inputs, KEYIN
command must be used.
When there’s input, Keyinh will return 1 and 0 when there isn't.

A = KEYINH(1,100) ‘Read from port 1 after removing bouncing effect.

146

Keypad
Variable = KEYPAD(PortBlock)

Variable : Variable to store results (Returns Byte, No String or Single)
PortBlock : Port Block (0~15)

Use this command Keypad to read input from keypad. A Port Block can be
used to read a 4 by 4 keypad input. Keypad input can be connected to the
lower 4 bits of the Port Block and keypad output can be connected to higher
4 bits of the Port Block.

Please refer to the below diagram.

051428 ¥ 12%’
. 15027057 2 s
) 2351687081 514 %

39’ 79’ uf’/ 4 15

A = KEYPAD(0) ' Read the status of keypad connected to Port Block 0

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

147

Ladderscan

LADDERSCAN

This command LadderScan will force 1 scan of LADDER. When put inside an
infinite loop like DO...Loop, it can enhance the speed of Ladder program
more than 10 ms per scan time.

If using this command as shown below, you will not be able to use BASIC at
the same time.

Const Device = CB280 'Device Declaration
Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,0ut, MOTOR
Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
LadderScan
Loop

148

Low

LOW Pin
Pin : I/O pin number (0~255)

Set the pin to LOW state. This command sets the pin to output state and
outputs LOW or OV (GND).

OUTPUT 8 ‘Set pin 8 to output state.
LOW 8 ‘Set pin 8 to LOW (0V).

When a port is set to High, the port is internally connected to VDD, whereas
if it's set to Low, the port is internally connected to VSS.

149

Memadr()

Variable = MEMADR (TargetVariable)
Variable : Variable to store results (No String or Single)
TargetVariable : Variable to find physical memory address

Like C language, you can use pointers in BASIC. By using pointers, you will
be able to find the physical memory address of RAM and use it to store or
read data.

Dim A as Single
Dim Adr as Integer
Adr = Memadr (A) ‘Return the physical address of A.

150

Ncd

Variable = NCD source

The command NCD can

Variable : Variable to store results. (No String or Single)
Source : source value (0~31)

return a 32 bit value.

HoH H H H H H H

= NCD

NCD
NCD
NCD
NCD
NCD
NCD
NCD

‘Result
‘Result
‘Result
‘Result
‘Result
‘Result
‘Result
‘Result

use used to set desired bit of 0x00000000 to 1 and

is
is
is
is
is
is
is
is

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

151

Nop

Nop
This command does a no operation command.

command cycle time.

It simply takes up one

Low 8
Nop
High 8
Nop
Low 8

‘Output very short pulse to port 8. (About 50 micro Sec)

152

On Int

ON INTx GOSUB label
x : 0 to 3, External Interrupt Channel

This command On Int must be called before accepting external interrupt
inputs. CUBLOC has 4 external interrupt pins. The interrupt pins can be set
to sense input on the Rising-edge, Falling Edge, and Both.

SET ONINTx command must be used with this command in order for the
interrupt to work.

*CB220 has no external interrupt inputs.

A4

Rising Edge Falling Edge

Dim A As Integer

On INTO Gosub GETINTO

Set INTO O 'Falling Edge Input
Do

Loop

GETINTO:

A=A+1 'Record number of interrupts
Return

153

On Ladderint Gosub

ON LADDERINT GOSUB label

If Relay F40 turns on in LADDER, and ON LADDERINT GOSUB command is
used, then the processor will jump to the routine specified by On Ladderint
command.

This can be used when LADDER part of the program needs to jump to
BASIC code.

Please use the SETOUT and DIFU command to write 1 to the relay F40.
When BASIC interrupt routine is finished, relay F40 can be cleared by
writing a zero to it.

During the interrupt routine execution, writing a 1 to relay F40 will not allow
another interrupt. If relay F40 is cleared from BASIC, it signs the end of
the interrupt routine and is ready to receive another interrupt.

Usepin 0, In

Set Ladder On

Set Display 0,0,16,77,50

On Ladderint Gosub msgl_rtn
Dim i As Integer

Low 1

Do
i=i+1
Byteout 1,1
Delay 200
Loop
msgl rtn:
Locate 0,0
Print "ON Ladderint",Dec i
Reverse 1
Return

Po SETOUT F40
| - r 1
I | =

When PO turns ON, it will turn on F40 and when relay F40 turns ON,
msgl_rtn interrupt routine in BASIC will be executed. In the interrupt
routine, a string is printed to the LCD.

154

Although there is only one relay F40 to create an interrupt in BASIC from
LADDER, we can use data Relay D to process many different types of

interrupts.

PO W0y 3.00
T &
I | L
SETOUT F40
c 1
P2 WMOY 200
= | - C 1
I | L
SETOUT F40
c 1

When PO turns ON, DO gets 3 and interrupt routine is executed. If P2 turns
ON, DO gets 2 and interrupt routine is executed. In the interrupt routine,
the user can then process the type of interrupt based on the value stored in

DO.

msgl rtn:
If D(0)=3 Then
Locate 0,0
Print "ON Ladderint",Dec i
End If
If D(0)=2 Then
Locate 0,0
Print "TEST PROGRAM",Dec i
End If
Return

For short version of above LADDER commands, the user can use INTON
command, which accomplishes both WMOV and SETOUT in one command.
The following is the equivalent shortened version of the above ladder:

PO INTOM 3.00
| r r 1
I i | =

P1 INTOM 2.00
| r r 1
I i | =

155

On Pad Gosub

ON PAD GOSUB label

You can set the packet size using SET PAD command. The ON PAD
interrupt will jump to the label when the buffer amount is equal to the set
packet size. Please make sure to use RETURN command after the label.

Const Device = Ctl700

Dim TX1 As Integer, TYl As Integer
Contrast 450

Set Pad 0,4,5

On Pad Gosub GETTOUCH

Do

Loop

GETTOUCH
TX1 = Getpad(2)
TY1l = Getpad(2)
Circlefill TX1,TY1,10
Pulsout 18,300
Return

156

On Recvl

ON RECV1 GOSUB label

When data is received on RS232 Channel 1, this command ON RECV1 will
automatically let the program jump to the specified label. The processor
will automatically check for receiving data and cause interrupts when this
command is used.

Dim A(5) As Byte

Opencom 1,19200,0, 100, 50

On Recvl DATARECV RTN ' Jump to DATARECV RTN when RS232
Do ' Channel 1 receives any data

Loop ' Infinite Loop

DATARECV RTN:
If Blen(1,0) > 4 Then

A(0) = Get(1,1) ' Read 1 Byte.
A(l) = Get(1,1) ' Read 1 Byte.
A(2) = Get(1,1) ' Read 1 Byte.
A(3) = Get(1,1) ' Read 1 Byte.
A(4) = Get(1,1) ' Read 1 Byte.
End If
Return ' End of interrupt routine
IMPORTANT

When RECV interrupt routine is being executed, another RECV
interrupt routine will not be allowed to be executed. After it
finishes current interrupt routine execution, the processor will come
right back to another ON RECV1 interrupt routine when there’s still
data being received. (data in receive buffer)

157

On Timer()

ON TIMER(interval) GOSUB label

On Timer() can be used to execute a interrupt routine at every specified
interval. Set the desired interval in milliseconds and a label to jump to when

Interval : Interrupt Interval 1=10ms, 2=20ms...... 65535=655350ms

1 to 65535 can be used

interrupt occurs.

158

On TIMER(100) Gosub TIMERTN
Dim I As Integer

Loop

TIMERTN:

Incr I ' I is incremented 1 every second.
Return

IMPORTANT

Please pay caution when creating the interrupt routine. It
must be less than the interval itself. If interval is set at 10ms,
the interrupt routine, from the label to its return, must be
within 10 ms (About 360 instructions/lines). Otherwise,
collisions can occur within the program.

Opencom

OPENCOM channel, baudrate, protocol, recvsize, sendsize
channel : RS232 Channel (0~3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)
recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
sendsize : Send Buffer Size (Max. 1024, Do not use variable)

To use RS232 communication, this command Opencom must be declared
beforehand.

CUBLOC has 2 channels for RS232C communication. Channel 0 is used for
Monitor/Download but the user can use it for RS232 communication, if
she/he wishes to forego monitoring. Download will still work fine
regardless.

The following are allowed baudrate settings for CUBLOC RS232:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400

For the protocol parameter, please refer to the table below:

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit2 Bit1 | Bit0

Parity Stop Bit Bit # of Bits

0 0 = NONE 0=1 Stop | 0 0 = 5 bit
Bit

0 1 = Reserve* 1=2 Stop | O 1 = 6 bit
Bits

1 0 = Even 1 = 7 bit

1 1 =0dd 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use
8 NONE 1 3

8 EVEN 1 19 (Hex = 13)
8 OoDD 1 27 (Hex = 1B)
7 NONE 1 2

7 EVEN 1 18 (Hex = 12)
7 oDD 1 26 (Hex = 1A)

OPENCOM 1, 19200, 3, 30, 20 ‘Set to 8-N-1

159

The user can set the send and receive buffer size. The send and receiver
buffers take up space in the data memory. Although you can set each
buffer up to 1024 bytes, it will take up that much of the data memory. The
number of variables you use may decrease. We recommend receive buffer
size from 30 to 100 and send buffer size from 30 to 50.

For CB220 module, port 1 and 2 can be used for Channel 0.
Port 10 and 11 can be used for RS232C Channel 1.

CHANNEL 0
TX «——souT O 1 24 VIN
RX—— sIN 2 .233 vss
ATN O 3 221 RES
vss O 4 210 vDD
PO O 5 2001 P15
P1 06 = 19[P14
P2 07 1800 P13
P3 [s 170 p12 CHANNEL1
P4 9 160 P11 —— TX
P5] 10 150 P10 +—— RX
P6 O] 11 140 P9
P7 O 12 130 P8

For the CB280 module, there are dedicated RS232 ports. For Channel 1,
there are 2 types of outputs, +/- 12V and TTL (+5/0V).

Please make sure to use only one of them at one time.
+12v\|_|_|_|_|_|_|_|_|J(
-12v

33 @ @49 | TTLTXI—> +5v
3@ @50 [TTLRX14—

35 @ @ 51 | AVREF GND
36 @ @ 52| P48

37 @ @53 |Pst
38 @ @54 [P0

+12V

-12v

3@ @55 P20
40 @ @ 56 | P28
i@ @57 P32
2@ @58 |P33
5 43@ @ 50| P34
44 @ @ 60 [P35
5@ @6 |Pi
46 @ @ 62 | P37
° 47 @ @63 [P3s
P11 [16@® @32 P12 P40 48 @ @ 64 | P39

*Use Set RS232 command to re-set your baudrate and parameter during
execution of your program.

160

Out

OUT Pin, Value
Pin : I/O pin number (0~255)
Value : Value to be outputted to the I/0 pin (1 or 0)

Output 1 or O to the specified pin. When you execute this command,
CUBLOC will automatically set the pin to output and output the Value set.

You do not need to use the Output command to set the pin beforehand
when using this command.

ouT 8,1 ‘Output HIGH signal on pin 8.
‘(This is same as using command High 8)
ouT 8,0 ‘Output LOW signal on pin 8.

‘(This is same as using Low 8)

161

Output

OUTPUT Pin
Pin : I/O pin number (0~255)

Set the Pin to output state. All I/O pins of CUBLOC module are set to HIGH-
Z input as default at power ON.

OUTPUT 8 ‘Set pin 8 to output state.

You can also use HIGH, LOW command to set to output state. When using
Output command, HIGH or LOW state is not clearly defined. We
recommend the use of HIGH or LOW command to set to output mode.

LOW 8 ‘Set pin 8 to output mode and output LOW signal.

162

Outstat()

Variable = OUTSTAT(Pin)
Variable : Variable to store results. (No String or Single)
Pin : I/O Pin Number (0~255)

Read the current outputted value for the specified pin. This command is
different from IN() command in that it reads the status of output, not input.

DIM A AS BYTE
A = OUTSTAT (0) '‘Read from Pin 0 and store the current status in
A.

Pause

PAUSE value

Exact same function as DELAY

163

Peek()

Variable = PEEK (Address, Length)
Variable : Variable to Store Result. (No String or Single)
Address : RAM Address.
length : Length of Bytes to read (1~4)

Read specified length of data from RAM Address.

Poke

POKE Address, Value, Length
Address : RAM Address
Value : Variable to store results (up to Long type value)
length : length of bytes to read (1~4)

Write specified length of data to the RAM Address.

Const Device = CB280

Dim F1 As Single, F2 As Single
Fl = 3.14

Eewrite 10, Peek (Memadr (F1),4),4
Poke Memadr (F2),Eeread(10,4),4

Debug Float F2,CR

164

Pulsout

PULSOUT Pin, Period
Pin : Output Pin (0~255)
Period : Pulse Period (1~65535)

This is a SUB library that outputs a pulse. To create a High pulse, the
output pin must be set to LOW beforehand. To create a Low pulse, the
output pin must be set to HIGH before hand.

If you set the Pulse Period to 10, you will create a pulse of about 2.6mS.
Likewise, a Pulse Period of 100 will give you about 23mS pulse.

LOW 2 HIGH 2
PULSOUT 2, 100 ‘23mS HIGH Pulse PULSOUT 2, 100 ‘23mS LOW
Pulse

Pulsout is pre-made system’s sub program.

sub pulsout (pt as byte, 1ln as word)
dim dl1l as integer
reverse pt
for dl11=0 to 1n
next
reverse pt
end sub

165

Put

PUT channel, data, bytelength
channel : RS232 Channel (0~3)
Data : Data to send (up to Long type value)
Bytelength : Length of Data (1~3)

This command sends data through the specified RS232 port. For Data,
variables and constants can be used. To send String, please use Putstr
command instead.

IMPORTANT OPENCOM 1,19200,0,50,10
DIM A AS BYTE

The command A~ H0

OPENCOM must be .
PUT 1,A,1 Send &HAO (0xAO0)

used beforehand .
to RS232 Channel 1.

Within CUBLOC, the data is first stored in the send buffer. CUBLOC BASIC
Interpreter will automatically keep sending the data in send buffer until it's
empty.

If the send buffer is full when PUT command is executed, the PUT command
will not wait for the buffer to flush. In other words, the data to send will be
thrown away. The command BFREE can be used to check the send buffer
beforehand for such cases.

IF BFREE(1,1) > 2 THEN ‘' If send buffer has at least 2 bytes free
PUT 1,A,2
END IF

BFREE() checks for how much space the buffer currently has.

TIPS
After using PUT or PUTSTR, the function SYS(0) can be used to verify that
the data has been stored in the send buffer.

OPENCOM 1,19200,0,50,10
PUTSTR 1, COMFILE"”
DEBUG DEC SYS (0) ‘' If output is 7, all data has been stored
' in the send buffer
*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

166

Putstr

PUTSTR channel, data...
channel : RS232 Channel. (0~3)
Data : String Data (String variable or String constant)

Send String data to RS232 Channel.

OPENCOM 1,19200,0,50,10
PUTSTR 1,”COMFILE TECHNOLOGY”, DEC I, CR

Similar to Put command, Putstr stores data to be sent in the send buffer.
Afterwards, the CUBLOC BASIC Interpreter takes care of the actual sending.
Please also be careful to not overload the send buffer when it's full, so you
do not lose any data that needs be sent.

167

Puta

PUTA channel, ArrayName, bytelength
channel : RS232 Channel. (0~3)
ArrayName : Array Name
Bytelength : Bytes to Send (1~65535)

The command Puta can be used to send a Byte Array.
Simply put name of the array and number of bytes to send.
The array data will be sent starting from the first element of the array.

Dim A(10) As Byte
Opencom 1,19200,0,50,10
Puta 1,A,10 ' Send 10 Bytes of Array A

IMPORTANT
If you try to send more bytes than the array has, CUBLOC will send

garbage values.

*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

168

Pwm

PWM Channel, Duty, Period
Channel : PWM Channel Number (0~15)
Duty : Duty Value, must be less than the Width.
Period : Maximum of 65535

Use PWM to Output desired PWM frequency. When using this command,
please be aware that PWM Channel Number is different from I/O port
number. For CB280, pins 5, 6, and 7 are used for PWM 0, 1, and 2,
respectively. Before using PWM, please make sure to se the pins used to
OUTPUT mode.

According to the set value of Period, a maximum of 16-bit precision PWM
signal is created.

When Period is set to 1024, it will be a 10 bit PWM.

When Period is set to 65535, it will be a 16 bit PWM. Please set the Duty to
be less than the Period. Duty can be 50% of Period to create a square wave.

PWM is independently hardware driven within CUBLOC. Once the PWM
command is executed, it will keep running until PWMOFF command is called.

‘ 1024
LOW 5 ' Set port 5 output and output LOW signal.
PWM 0,200,1024 ' Output 10-bit PWM with duty of 200 and
' Width of 1024

IMPORTANT

PWM 0, 1, and 2 must used the same value of Period since they
share the same resources. Their duty values can be different.

PWM Channel 3, 4, and 5 also must use the same value of Width
since they share the same resources. Their duty values can be
different.

169

Pwmoff

PWMOFF Channel
Channel : PWM Channel. (0~15)

Stop the PWM output.

Following is available PWM channels according to the models:

souT [1 2403 VIN

sIN O 2 230 vss

ATN O 3 221 RES

vss O 4 210 vDbD

PO 5 2003 P15

P1 06 1900 P14

P27 180 P13

P38 170 P12

Pa o 160 P11

PWMO «—— P5 [10 150 P10
PWM1 «—— P6 [11 140 P9
PWM2 «—— p7 [12 1300 P8

For CB220, 3 PWM channels are provided on the pins P5, P6, and P7.

TTLTX1
TTLRX1
AVREF

souT | 1@ @17 VDD
SIN| 2@ @ 18 vss
ATN [3@ @19 RES
vss | 4@ @20 NiC
PO | 5@® @21 P16
Pi|6® @22 P17
P2| 7@ @23 P18
P3| s® @24 pig»>PWM3
P4 o® @25 p2o->PWM4
PWMO «—— ¢5|10@ @ 26 P21 -» PWM5
PWM1 «—— ps |10 @27 P22
PWM2 «——p7|120 @28 P23
P8 [13@ @29 P15
P9 [14@® @30 P14
P10 |[15@ @ 31 P13
P11 [16@ @32 P12

Please refer to the table below for PWM Channels and corresponding I/O
ports..

PWM Channel CB220 CB280 CB290 CT1720
PWMO 1/05 1/05 1/05 1/08
PWM1 1/06 1/06 1/06 1/09
PWM2 1/07 1/07 1/07 1/0 10
PWM3 1/0 19 1/0 89 1/0 11
PWM4 1/0 20 1/0 90 1/0 12
PWM5 1/0 21 1/0 91 1/0 13

170

Ramclear

RAMCLEAR

Clear CUBLOC BASIC's RAM. BASIC's data memory can hold garbage
values at power on. Ramclear can be used as a type of garbage collector
to clear the ram.

*There are CUBLOC modules that support battery backup of the RAM. If

you don’t use Ramclear command in these modules, CUBLOC will remember
previous values of RAM before powering off.

171

Reverse

REVERSE Pin
Pin : I/O Pin Number. (0~255)

Reverse the specified pin output. High to Low or Low to High.

OUTPUT 8 ‘Set Pin 8 to output.
LOW 8 ‘Set output to LOW.
REVERSE 8 ‘Reverse LOW to HIGH.

172

Rnd()

Variable = RND(0)

The command Rnd() creates random numbers. A random number between
0 and 65535 is created and stored in the specified variable. The number
inside Rnd() has no meaning.

DIM A AS INTEGER
A = RND(0)

Internally within CUBLOC, this function is Pseudo Random, it creates a
random number based on the previous values. When powered off and
turned back on again, the same pattern of random values are generated.
Thus, this function is not a true random number generator.

173

Select...Case

Select..Case
If the condition Value of Case is met, the Statement under the case is
executed.

Select Case Variable
[Case Value [,Value],...
[Statement 1]]
[Case Value [,Value],...
[Statement 2]]
[Case Else
[Statement 3]]
End Select

Select Case A
Case 1

Case 2

Use Comma(,) for more than 1 value.

Weo N

B
Case 3,4,5,
B =

Case Use < for logical operations.

—
0

| N
=

Case Else Use ELSE for all other cases.

End Select

Select Case K
Case Is < 10 ' If less than 10

Case Is < 40 ' If less than 40
Case Is < 80

Case Is < 100

Case Else

End select

174

Set Debug

SET DEBUG On[/Off]
Set Debug is set to On by default.

You can use this command to turn OFF and turn ON the DEBUG window in
BASIC.

When you don’t need DEBUG feature, you can use this command to turn off
DEBUG feature instead of erasing all the code with Debug code. When this
command is used, all DEBUG commands are not compiled, in effect, they
are simply discarded from the program.

175

Set I2c

SET 12C DataPin, ClockPin
DataPin : SDA, Data Send/Receive Pin. (0~255)
ClockPin : SCL, Clock Send/Receive Pin. (0~255)

This command set the I2C Data and Clock Pin, SDA and SCL for I2C
communication. Once this command is executed, both pins become to
OUTPUT, HIGH state. Please use Input/Output pin for I2C and use two
4.7K resistors as shown below.

SCL
SDA

Some of the I/O ports only support Input or Output. Please check the pin
data sheet for the model you are using.

176

Set Ladder on/off

SET LADDER On[/Off]

Ladder is set to Off by default.
Use this command to turn On Ladder Logic.

The following is an example of such minimal BASIC code for Ladder logic.

Const Device = CB280 'Device Declaration

Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY

Usepin 2, In,BKEY

Usepin 3,0ut,MOTOR

Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder
Do
Loop 'BASIC program will run in infinite loop/

177

Set Modbus

Set Modbus mode, slaveaddress
mode : 0=ASCII, 1=RTU (Currently, only ASCII supported)
slaveaddress : Slave Address (1 to 254)

CUBLOC supports MODBUS protocol. MODBUS can connect to RS232
Channel 1. Currently, only ASCII Slave mode is supported internally.
(RTU mode is NOT supported internally).

To enable MODBUS slave mode, please use the Set modbus command. This
command set modbus is to enable the MODBUS slave. It must come after
OPENCOM command and only runs on RS232 Channel 1. Baurate, bit, and
parity can be set with OPENCOM.

Opencom 1,115200,3,80,80 ' Please set receive buffer
' of at least 50.
Set Modbus 0,1 ' ASCII Mode, Slave Address=1

After this command, CUBLOC responds automatically. CUBLOC supports
MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read

03, 04 Word Write

05 1 Bit Write

06 1 Word Write

15 Multiple Bit Write
16 Multiple Word Write

Please refer to Chapter 9 for detailed MODBUS description and MOBUS
ASCII and RTU examples.

178

Set Outonly

SET OUTONLY On[/Off]

The CB290/CT1720 (Rev B) output ports (P24-P55) are in high impendence
(High-Z) state in order to prevent garbage values outputting at power ON.
You must use “Set OUTONLY ON” command to set the CB290 / CT1720
output ports to output status.

Const device = cb290
Set outonly on
Low 24

179

Set Pad

SET PAD mode, packet, buffersize
mode : Bit Mode (0~255)
packet : Packet Size (1~255)
buffersize : Receive Buffer Size (1~255)

The CUBLOC has a dedicated port for Keypad / Touchpad inputs similar to a
PC’s Keyboard and Mouse ports. This port can be used with the Set Pad
command to create interrupts when input is received on the Keypad,
Touchpad, etc... This port is basically a Slave mode SPI communication.

To use the PAD communications, you must use Set Pad command at the
beginning of your program. The PAD communication uses 4 wires. SCK is
used as clock signal, SS as Slave Select, MOSI as Master Out Slave In, and
MISO as Master In Slave Out signals.

SS |——»| SS
SCK |— | SCK
MOS| |—— | MOSI
MISO |¢——| MISO

avd HONOol

TOUCH PAD
CONTROLLER CUBLOC

I/0 ports PO through P3 can be used for PAD communications.

souT O 1 243 VIN
sIN O 2 230 vss
ATN O 3 22 RES
vss [4 213 vDD

ss «——Po s 200 P15
SCK «——P1 6 190 P14
MOS| «—— P2 7 18 [P13
MISO «—— P3 [] 8 173 P12
Pa o 16 [P11

P5 [10 150 P10

Pe [11 140 P9

P7 O 12 131 P8

180

sour| 1@ @17 vop N X1 33 @ @ 49 | TTLTX1

sn| 2@ @18 vss RX1 34@ @ 50 | TTLRX1

AN | 3@ @ 19 ReES AVDD 35 @ @ 51 | AVREF
vss| 4@ @20 NiC N/C 36 @ @ 52| P48
SS «—— po| 5@ @21 Pi6 P24 37 @ @ 53 P31
SCK ¢—— P1| 6@ @22 P17 P25] 38/ @1 @) 541 P30
MOSI «—— pP2| 7@ @23 P18 P26 39 @ @ 55 P29
MISO «—— P3| 8@ @ 24 P19 P27 40 @ @ 56 | P28
P4l 9@ @25 P20 P47 41 @ @ 57 | P32
P5 [10@ @ 26 P21 P46 42 @ @ 58 | P33
P6 |11@ @ 27 P22 P45 43 @ @ 59 [P34
P7 |12@ @ 28 P23 P44 44 @ @ 60 [P35
P8 [13@ @ 29 P15 P43 45@ @ 61| P36
P9 |14@ @30 P14 P42 46 @ @ 62 | P37
P10 [15@ @ 31 P13 P41 47 @ @ 63 [P38
P11 [16@ @ 32 P12 P40 48 @ @ 64 [P39

Packet is for size of packet that will cause an interrupt.
For example, the touchpad require 4 bytes to be received before an
interrupt is called. Here, the size of the packet is 4.

Buffersize is the total size of the receive buffer. The buffer size must be at
least 1 greater than packet size. (buffersize = packet+1) A larger buffer
will essentially give you more time to process the interrupt routine. The
buffer size is usually set to 5 or 10 times the packet size.

Mode will set the receiving mode of the received data. Please refer to the
below table:

Mode Valu Bit Diagram
e Pattern

LSB First &H20 | 0010

XXXX
MSB First &HO00 | 0000

XXXX
SCK Low- | &HO8 | xxxx |
Edge 1xxx
Triggered
SCK High-Edge | &HOO | xxxx | |
Triggered 0XXX
Sampling &HO04 | xxxx
after SCK X1xx —_
Sampling &HOO | xxxx ot 1 "1 tt
before SCK X0xx

181

You can add the values of the receiving modes. For example, for MSB first,
High-Edge Triggered SCK and sampling after SCK:

0x00 + 0x00 + 0x04 = 0x04
Here are some of the common examples:

SCK
&HOO Sample ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

SCK
&H04 Sample ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

SCK
&HO08 e [L[L[]
MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

SCK
&HOC Sample ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

For PAD communications, you can use Comfile’s Keypads or Touch screens.

The Set Pad command will automatically set the ports PO through P3, the
user doesn’t have to set them.

182

Set Rs232

Set Rs232 channel, baudrate, protocol
channel : RS232 Channel (0~3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)

You can only use Opencom command once to open a serial port.

In order

to change the baudrate and protocol, the Set Rs232 command can be used.

For the protocol parameter, please refer to the table below:

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit2 Bit1 | Bit0

Parity Stop Bit Bit # of Bits

0 0 = NONE 0=1 Stop | 0 0 = 5 bit
Bit

0 1 = Reserve* 1=2 Stop | O 1 = 6 bit
Bits

1 0 = Even 1 0 = 7 bit

1 1 =0dd 1 1 = 8 bit

The below table shows typical settings based

on the previous table:

Bits Parity Stop Bit Value to Use

8 NONE 1 3

8 EVEN 1 19 (Hex = 13)

8 ODD 1 27 (Hex = 1B)

7 NONE 1 2

7 EVEN 1 18 (Hex = 12)

7 ODD 1 26 (Hex = 1A)
Opencom 1, 19200, 3, 30, 20 ‘Open Rs232 channel 1
Set Rs232 1, 115200, 19

‘Change Baudrate & Parity

183

Set Until

SET UNTIL channel, packetlength, untilchar
channel : RS232 Channel. (0~3)
packetlength : Length of packet (0~255)
untilchar : Character to catch

This is a conditional statement you can put right after the ON RECV
command. Since the ON RECV command will cause an interrupt even when
there 1 byte of data received, this command Set Until can be used to set
when the interrupt will be called.

When the specified character is received or length of bytes received has
exceed the set packetlength value, then ON RECV will jump to the specified
interrupt routine. This way, you can control when you want to process
received data.

The packet length is set in case the specified character never arrives.

You MUST use this command with ON RECV command.
The following is an example:

Dim A(5) As Byte

Opencom 1,19200,0, 100, 50
On Recvl DATARECV_RTN

Set Until 1,99,"s"

As you can see above, the packet size is 99 bytes. In other words, if
character “"S” is not received within 99 bytes, interrupt will occur.

SET UNTIL 1,5

The user may also just set the packet size and not set the character as
shown above.

The character may also be written in decimal as shown below:

SET UNTIL 1,100,4

184

Set Int

SET INTx mode

x : 0 to 3, External Interrupt Channel

mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

This command must be used with On Int command in order to receive

external interrupt inputs.

The mode of interrupt input can be set here to either falling edge, rising
edge, or changing edge.

SET INTO 0 ' Set external interrupt to

be on

the Falling Edge.

® 17
® 15
® 19
® 20
® 21
® 22
® 23
® 2
® 25
® 26
® 27
® 28
® 29
® 30
® 31
® 32

VDD
vss
RES
N/C
P16
P17
P18
P19
P20 «—— [INTO
P21 «—— [INT1
P22 «—— INT2
P23 «—— [INT3
P15
P14
P13
P12

X1
RX1
AVDD

P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

3O
34 @
KL)

37 @
38 @
39 @
40 @
41 @
42 @
43 @
44 @
45 @
46 @
47 @
48 @

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

185

Set Onglobal

SET ONGLOBAL On|[/Off]
At power On, Set Onglobal is ON by default.
This command turns on or off the ability to receive ALL interrupts.

When Onglobal is turned Off and turned On, all interrupt settings set before
turning Off will be in effect.

SET ONGLOBAL OFF ' Turn ALL interrupts OFF.

If you don't use any interrupts, you can turn off all interrupts to increase the
execution speed of CUBLOC.

186

Set Onint

SET ONINTx On[/Off]
At power On, Set Onint is ON by default.

This command turns On or Off the ability to receive individual external
interrupts using global flags. The names of these flags correspond to the
interrupt number supported by the device. For example ONINT1 is used for
Interrupt 1.

When the ONINTx global is set to ON for a specific interrupt, then an
interrupt can be received using the ON INTx command. If the global is set
to OFF, then the code for ON INTx will not be executed if the corresponding
external interrupt occurs. See also the SET INTx command which controls
external interrupts to fire.

Set ONINTO On
Set ONINT1 On
Set ONINT1 Off
Set ONINT2 Off
Set ONINT3 On

187

Set OnLadderint

SET ONLADDERINT Onj/Off]

At power On, Set OnLadderint is ON by default.

This command turns On or Off the ability to receive Ladder interrupts using

global flags.

When the OnlLadderint is set to On, then
the On Ladderint command.

an interrupt can be received using

If the global is set to OFF, then the code for

On Ladderint will not be executed if the Ladder interrupt occurs. See also

the On Ladderint command.

:WH SH 5 2 W _cubloc X 20/ # Wiadderlabd_1.cul 1 =10] x|
E) 20 #¥@ &£3E =3TH
(B[S % mE Al | EE
[FI] BASIC [F2] LADDER |Ladder Mnemonic |
pLC -H—l-m—l—‘ 1 |—<> {1‘-{01 - 1_‘ 7 |~(--x] 4O [1O [1O [1O
Wizard | F3 F4 F5 FE F7 F8 F3 Fi1 F12 | NOT | END Insert | Delete| Undo | Copy
|
F30 INTON 3.00
e]
END
2 1
3
=|
[Xill Vil Modified Program : 1452 Bytes, Data: | ,
2 CUBLOC studio [d:WHZEH=2% _cubloc=503 — |3 x|
OHE(E) ME(E) CIHHIADy 23(R) 286 =s2H)
IEEEIEIES AR S
[FI1BASIC | [F2] LADDER | Ladder Mnemonic |
Const Device = CEBZE0 B
Dim A Az Integer
l;:rtncizzger on + Debug Terminal Py =] 553
; Port Baud Rale Parity DalaBits g
On Ladderint Gosubk FROMLADDER FWWL””ﬂm.ﬂ|WW L”s =l 4

Do

Loop
FROMLADDER:

Delbug Dec A,CR

Incr A

Return

188

Close

[~ Fix Right Side

Set Onpad

SET ONPAD On[/Off]
At power On, Set Onpad is On by default.

This command turns On or Off the ability to receive Onpad interrupts using
global flags.

When the Onpad is set to on, then an interrupt can be received using the
On Pad command. If the Onpad is set to OFF, then the code for On Pad will
not be executed if the interrupt occurs. See also the Set Pad and On Pad
commands.

189

Set Onrecv

SET ONRECVO Onj/Off]
SET ONRECV1 OnJ/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On RecvX interrupts
using global flags. A On RecvX interrupt occurs after data is received on
the serial port AND stored into the receive buffer.

When the Onrecv is set to On, then an interrupt can be received using the
On RecvX command. If the Onrecv is set to OFF, then the code for On
RecvX will not be executed if the interrupt occurs. See also the On Recv
command.

Set ONRECV1 On
Set ONRECV1 Off

190

Set Ontimer

SET ONTIMER On[/Off]
At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Timer interrupts
using global flags. An interrupt occurs at every time interval set by the On
Timer() command.

When the Ontimer is set to on, then an interrupt can be received using the
On Timer() command. If the Ontimer is set to OFF, then the code for On
Timer() will not be executed if the interrupt occurs. See also the On Timer()
command.

191

Shiftin()

Variable = SHIFTIN(clock, data, mode, bitlength)

Variable : Variable to store results. (No String or Single)

Clock : Clock Port. (0~255)

Data : Data Port. (0~255)

Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
1 = MSB First (Most Significant Bit First), After Rising Edge
2 = LSB First (Least Significant Bit First), After Falling Edge
3 = MSB First (Most Significant Bit First), After Falling Edge
4 = LSB First (Least Significant Bit First), Before Rising Edge
5 = MSB First (Most Significant Bit First), Before Rising Edge

bitlength : Length of bits (8 to 16)

This command Shiftin() receives shift input. It uses 2 pins, CLOCK and
DATA to communicate.

SHIFTIN and SHIFTOUT command can be used to communicate with SPI,
MIcrowire, and similar communication protocols. When using EEPROM,
ADC, or DAC that requires SPI communication, this command can be used.

After Rising After Falling Edge
Edge

Before Rising Edge

DIM A AS Byte
A = SHIFTIN(3,4,0,8)

\

Port 3 is Clock, Port 4 is Data,

* Mode 0, 8 bit received.

w U UHUUUL
DATA_| P |_| I—

0o 1 1 0 0 1 0 0 =26H
LSB MSB

192

Shiftout

SHIFTOUT clock, data, mode, variable, bitlength
Clock : Clock Port. (0~255)
Data : Data Port. (0~255)
Mode : 0 = LSB First (Least Significant Bit First)
1 = MSB First (Most Significant Bit First)
2 = MSB First(Most Significant Bit First) , Create ACK (For 12C)
variable : Variable to store data (up to 65535)
bitlength : Bit Length (8 to 16)

This command Shiftout sends shift output. There are 3 modes. Mode 2 is
for 12C protocol. In I2C communication, there requires an acknowledgement
(ACK) signal for every 8 bits.

SHIFTOUT 3,4,0,&H55,8 ' pin 3 = Clock,
' pin 4 = Data, Mode = 0, send 0x55
' bitlength 8 bit,

DATA J_| |_| |_| |_|_

1 1 0 = 55H
LSB MSB

193

Sys()
Variable = SYS(address)
Variable : Variable to store results. (No String or Single)

address : Address. (0~255)

Use command Sys() to read the status of RS232 buffers for both Channel 0
and 1.

° Address 0 : Actual bytes of sent data in send buffer after executing commands
PUT or PUTSTR.

o Address 1 : Actual bytes of sent data in receive buffer after executing
commands GET or GETSTR

° Address 5 : Timer value that increments every 10ms

° Address 6 : Data Memory (RAM) Address

SYS(5) will return the value of the system timer which increments every
10ms.

You may only read the value, not change it. The Timer will increment up to
65535 and then reset to 0. You can use this system timer for applications
requiring extra timer.

SYS(6) will return the current Data Memory Address. At power ON, the
Data Memory Address is reset to 0. After calling Sub routines or Functions,
the Data Memory Address will increment.

If will also increment when Sub routines or Functions are called within a Sub
routine or a function. Interrupts will also increment the Data Memory
Address. When the Data Memory Address exceeds the total Data Memory
available, it will cause Overflow. By using this function, you can avoid
Overflow. CB280 has maximum of 1948 bytes of Data Memory. Please
make sure to have at least 100 bytes of free Data Memory for safety.

A = Sys(6) 'Store the current Data Memory Address in A

194

Tadin()

Variable = TADIN(Channel)
Variable : Variable to store results. (No String or Single)
Channel : AD Channel Number (Not pin number, 0~15)

This command Tadin() is similar to Adin(). It returns the average of 10
ADIN converted value. When working under noisy environments, using
Tadin() could help in obtaining more precise results.

Tadin() is pre-made system'’s functions program

function tadin(num as byte) as integer
dim ii as integer, ta as long
ta =0
For ii = 0 To 9
ta = ta + Adin (num)
Next
TADIN = TA / 10
End Function

195

Time()

Variable = TIME (address)
Variable : Variable to store results. (No String or Single)
address : Address of time value (0 to 6)

CUBLOC module CB290 has an RTC chip internally. You can use Time()
and Timeset commands to set and return time values to and from the RTC.
Time information such as current time, day of the week and year can be set
to the RTC and read from it in real-time.

Time is kept alive even when module powers off through use of its backup
battery.

The following is a chart showing the addresses of the RTC and its
corresponding values.

* You cannot use these commands for CB220 and CB280 since they do not
have an RTC.

Addres | Value Range Bit Structure
s
0 Secon 0~59 2" digit place 1% digit place
d

1 Minute | 0~59 2" digit place 1% digit place
2 Hour 0~23 2nd digit | 1% digit place

place
3 Date 01~31 2nd digit | 1% digit place

place
4 Day 0~6 1%t digit

place
5 Month | 1~12 2nd 1% digit place
digit

6 Year 00~99 | 2™ digit place 1% digit place

Please refer to the chart below for day of the week and its corresponding
numerical value:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

QN |h[WIN[—|O

196

Timeset

TIMESET address, value

address :

Address of time value (0 to 6)

value : time value. (0~255)

Use TIMESET command to store new time values.

Address Value Range Bit Structure
0 Second | 0~59 2" digit place 1% digit place
1 Minute | 0~59 2™ digit place 1% digit place
2 Hour 0~23 2nd digit | 1% digit place
place
3 Date 01~31 2nd digit | 1% digit place
place
4 Day 0~6 | 1% digit place
5 Month 1~12 10 1% digit place
6 Year 00~99 | 2" digit place 1% digit place

The following is an example code showing how to set new time, and
outputting current time to the debug window:

Const Device =CT1700
Dim I As Byte

Timeset
Timeset
Timeset
Timeset
Timeset
Timeset
Timeset

Do

I

0,0 'Sec

1,&H32 'Min

2,&H11 'Hour

3, &H1 'Date

4, &H5 'Day of the week
5, &H6 'Month

6, &H5 'Year

= Time (6)

Debug "Year ","200",Hex I, " "

I

= Time (5)

Select Case I
Case 0

Debug "January"

Case 1

Debug "February"

Case 2

Debug "March"

Case 3

Debug "April"

Case 4

Debug "May"

Case 5

Debug "June"

197

Case 6
Debug "July"

Case 7

Debug "August"
Case 8

Debug "September"
Case 9

Debug "November"
Case 10

Debug "December"
End Select
I = Time (3) 'Print date
Debug " ", Hex2 I
Debug " "

I = Time (4)
Select Case I
Case 0

Debug "Sunday "
Case 1

Debug "Monday "
Case 2

Debug "Tuesday "
Case 3

Debug "Wednesday "
Case 4

Debug "Thursday "
Case 5

Debug "Friday "
Case 6

Debug "Saturday "
End Select
Debug cr

I = Time(2)

Debug Hex2 I,":"

I = Time(1)

I = Time (0) Port Baud Rate Parity Data Bts g1y 1

Debug Hex I,cr [comt =] 115200 ~| [wene ~| [z ~| @rx
Delay 1000

Loop

Debug Terminal Screenshot:
Friday
Friday

Fr

Friday

198

Udelay

UDELAY time
time : interval (1~65535)

A more specific delay function. Delay will start out at about 70 micro-
seconds. Every unit added will add 14 to 18 micro-seconds.

For example. Udelay 0 would be about 70 micro-seconds. Udelay 1 would
be about 82 to 84 micro-seconds. When Interrupt or LADDER code is being
executed at the same time, this delay function might be affected. During
this delay, BASIC interrupts are enabled and could cause further delay when
using this command.

To not get affected by LADDER or BASIC, we recommend stopping LADDER
and all interrupts before using this command.

\

Udelay 100 Delay about 1630 micro-seconds.

199

Usepin
Usepin I/O, In/Out, AliasName
I/0 : I/O Port Number. (0~255)
In/Out : “In” or “Out”
AliasName : Alias for the port (Optional)

This command Usepin is used to set the I/O pins status and alias nhame for
LADDER program.

Please use this command to set the I/O ports(pins) before using them in
LADDER.

Usepin 0, IN, START
Usepin 1,0UT,RELAY
Usepin 2, IN,BKEY
Usepin 3,0UT,MOTOR

200

Utmax

UTMAX variable
Variable : Variable for decrement. (No String or Single)

Increment the variable by 1. When maximum is reached, the variable is no
longer incremented. The Maximum here refers to the variable’s maximum

value. In the case with Byte, the maximum would be 255 and in the case
with Integer, the maximum would be 65535.

Utmax A ' Increment A by 1

201

WaitTx

WAITTX channel
channel : RS232Channel. (0~3)

This command WaitTx will wait until the send buffer is flushed.
This one command accomplishes same functions as shown below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

\

DO WHILE BFREE (1,1)<49 Wait until all data have been sent

LOOP

By using WaitTx, the process of sending data becomes simpler as shown
below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

\

WAITTX 1 Wait until all data have been sent

When this command is waiting, other interrupts may be called. In other
words, this command will not affect other parts of the CUBLOC system.

202

Chapter 7

CUBLOC
Display Library

With CUBLOC, you can easily control LCD through Comfile LCD products
such as the GHLCD or CLCD. Drawing lines, circles, boxes and printing
strings can be done with single line of code. Below are some of our LCD
specifications that will aid the user in understanding the basics.

Character LCD : CLCD

CLCD is a blue-screen LCD that can print characters and numbers. A
control board that receives serial data and outputs to the LCD is attached to
the back of the CLCD.

% 5
92 |45 4T 47
)

(1) ‘j,“,
g
34 Voo /vssi T)
eoleAZK [2 346
[15k/16A 2 5.7
Vo [azc | o |
) (ROl R ol s8]
% RP1
3

CLCD receives data through the I2C communication protocol.

204

Set Display
method, baud, buffersize
:0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
: Communication Method 0=CuNET, 1=COM1

SET DISPLAY type,
type
Method
baud
Buffersize

This command SET DISPLAY can be used to set the settings for display.

can only be used once. All displays will communicate using method set

here.

Please choose the type of LCD, the method, baud rate, and buffer size.

: Baud rate (CUNET Slave address)
: Send Buffer Size

CLCD will use Method 0.

Method = 1 (RS232 Channel 1)

Use RS232 Channel 1 for display. For the CB220, port 11(TX) is used.

CHANNELO

TX «—— souT O
RX——

SIN O
ATN O
vss O

Po [
P1 O
P2 O
P3 [
P4 o9
P5 O] 10
P6 O] 11
P7 012

©® N GOEWN S

24
23
22
21
20
19
18
17
16
15
14
13

P9
P8

For the CB280, pin 33 or pin 49 can be used.
signal and 33 outputs 5V level signal.

CHANNEL O

TX «— sout
RX —™> sN

CHANNEL 1

P11 —— TX
P10 «—— RX

Pin

CHANNEL 1
1@ @17 VDD TX +—— ™1 330 @ 49
2@ @18 vss RX — RX1 34 @ @ 50
1@ ® 19 RES AVDD 35 @ @ 51
4@ @20 NIC NC 36 @ @ 52
50 @21 Pl6 P24 37 @ @ 53
6® @22 P17 P H 0O OB
7@ @23 Pig P26 30 @ @ 55
s® @24 prg PWM3 P27 40 @ @ 56
9@ @25 p20-»>PWM4 P47 41 @ @ 57
100 @26 P21 »PWM5 P 42 @ @ 58
1@ @27 p22 P45 43 @ @ 59
120 @28 P23 P44 44 @ @ 60
13@ @29 P15 P43 45 @ @ 61
14@ @30 P14 P42 46 @ @ 62
150 @31 P13 P41 47 @ @ 63
160 @32 P12 P40 48 @ @ 64

It

49 outputs 12V level

CHANNEL1

TTLTXT ——
TTLRX1 4——
AVREF

Pag

P31

P30

P29

P28

P32

P33

P34

P35

P36

P37

P38

P39

205

The possible Baud Rate settings are as follows:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400.

The recommended buffer size is around 50 to 128. If the send buffer size
too small, data will not be displayed correctly. If the send buffer size is too

big, it will take up that much data memory space.

SET DISPLAY 0,1,19200,50 ¢ Set Baud rate to 19200 and
¢ send buffer to 50..

SET DISPLAY command can only be used once at the beginning of the
program.

206

Method = 0 (Use CuNET)

CuNET is a type of I12C protocol that is part of CUBLOC.
For CB220 , use I/O Port 8 (Clock) and Port 9 (Data).

sout O 1 240 VIN
SIN O 2 230 vss
ATN O 3 220 RES
vss 04 210 VDD
PO 5 2001 P15
P16 190 P14
P27 180 P13
P3 s 170 P12
Pa o 160 P11
P5 [10 1500 P10
Pe O] 11 140 P9 —SDA
P7 O 12 130 P8 —SCL

CuNET can be used with displays that support it. CuNET does not used
Baud Rate Settings, it uses slave address settings instead.

SET DISPLAY 2,0,1,50 ‘'CLCD, Slave address of 1, Send buffer of 50

Since CuNET supports multiple devices per CuNET lines, slave addresses are
required. 1:N communication can be accomplished with 2 lines.

I I

Slave Slave Slave Slave Slave
Address Address Address Address Address
01 02" Py 340 27"

Although multiple devices can be connected to the 12c, for displays, only
ONE device may be attached.

207

Cls

Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Csron

Turn Cursor ON. (Default if OFF).

Csroff

Turn Cursor OFF.

Locate

LOCATE x,y
X : X-axis position of LCD
Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

\

LOCATE 1,1 Move cursor to 1,1

PRINT “COMFILE”

Print

PRINT String/Variable
String : String
Variable : When using variables/constants,

String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer,
GPRINT command can be used.

LOCATE 1,1 N
PRINT “COMFILE”,DEC I

Move to position 1,1

208

CLCD Module

On the back of the CLCD, a control board is attached. This control board
receives CuNET signal and prints on the CLCD.

DIP S/IW

v

@E@

CUNET RS232 5V RS232

CLCD can also communicate using RS232. There are two RS232 connector,
one for 3pin 5V level signals and the other for 4 pin +/- 12V level signals.

o
NN

CUNET RS232 5V R8232

Use the CLCD DIP switch to set the I2C slave address. The 4™ DIP switch
is not used.

DIP Switch RS232 Baud rate 12C Slave
Address

123
ON

H

2400 0

*am"] 4800 1
°”E 9600 2

123

°"E 19200 3

o
z

"aal 28800 4
12 3

Mg 38400 5
12 3

Ny 57600 6
12 3

E 115200 7

209

One of CUNET or RS232 communication can be used.

If both are

connected, please make sure when one of them is working, other is not.

The following is CLCD command table:

Command Example (hex) Byte Execution | Explanation
S Time

ESC'C’ 1B 43 2 15mS Clear screen. A 15ms delay
must be given after this
command.

ESC'S’ 1B 53 2 Cursor ON (Default)

ESC's’ 1B 73 2 Cursor OFF

ESC ‘B’ 1B 42 2 Backlight ON (Default)

ESC'b’ 1B 62 2 Backlight OFF (Default)

ESC ‘H’ 1B 48 2 LOCATE 0,0

ESC'L'XY 1B 4C xx yy 4 100 uS Change the position of the cursor.

ESC 1B 44 Code | 11 Character code 8 through 15 is 8

‘D’ 8byte 8bytes custom characters that the user is
free to create and use. This
command will store the bitmap in
this custom character memory
area.
Code : 8-15 Character code

1 01 1 Move to beginning of row 1

2 02 1 Move to beginning of row 2

3 03 1 Move to beginning of row 3

4 04 1 Move to beginning of row 4

If received data is not a command, the CLCD will display it on the screen.

When connecting RS232, maximum baud rate settings for 12V(4 pin) level

is 38400bps.

For 5V level (3 pin), up to 115200bps can be used.

The following is an example code when using the CB280 to connect to the

CLCD module through CUNET protocol.
CLCD will display increment of nhumbers.

Const Device = Cb280
Set Display 2,0,1,50

\

When you execute this program,

Set the SLAVE ADDRESS to 1 by

' manipulating the DIP switch.

Dim i As Integer

Delay 100 ' Delay for start up of CLCD

Cls

Delay 200 ' Delay for initializing and clearing CLCD
Csroff

210

Locate 5,2
Print "Start!!!"

Delay 500

Cls

Delay 100

Do
Incr i
Locate 0,0
Print "COMFILE"
Locate 1,3
Print "CUBLOC ",Dec i
delay 100

Loop

* The slave address of CLCD and SET DISPLAY command should match.

211

GHLCD Graphic LCD :
GHB3224 Series

GHLCD is able to display characters and graphic on 3 different layers.
Unlike our CLCD, the GHLCD supports many different commands for easy
drawing of lines, circles, and boxes. There are also commands such as
copy, cut, paste, and a graphic software CuCanvas for downloading BMP
images to the GHLCD.

The GHB3224 model is a black and white STN type LCD with display area of
320 by 240 pixels. There are 3 layers. The first layer is for text and the
other 2 layers can be used for graphics.

* GHLCD Library is 100% compatible with CUTOUCH modules.

Layer1
Layer2 I
Layer3 |

212

The text layer size is 40x15 as you can see in the below grid. Each
character size is 8 by 16.

111111111122222222223333333333
0123456789012345678901234567890123456789

O©CONOOOPRWN-=-20

For graphics, 320 by 240 pixels are provided for the GHLCD series.

0 319

239

Please note that graphics or characters will be printed in random places
when trying to print outside the specified range of pixels shown here.

With the graphic layer, you have a complete control over where to display
graphics over the 320 x 240 pixels.

213

With the text layer, you can display text over the specified text pixels of 40
by 15.

We recommend to draw the background in the graphic layer and to print
characters in the text layer.

GHB3224C supports CuNET.
GHB3224C model support CuNET. When using CUBLOC, please use the
GHB3224C model as you have one more RS232 port free to use for

something else.

GHB3224C CuNET setup settings:

Set Display 1,0,1,50 ‘GHLCD, CUNET, Set Address to 1,
‘Send buffer to 50..

*Warning : CUNET Slave address and Display Slave address must match.
Display Slave address can be set with the DIP switch.

214

Cls

CLS
Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Clear

CLEAR layer
Erase the specified layer(s).

v

CLEAR 1 Erase (Text) Layer 1.
CLEAR 2 ' Erase (Graphic) Layer 2.
CLEAR 0 ' Erase all layers. Same as CLS.

Csron

CSRON
Turn Cursor ON. (Default if OFF).

Csroff

CSROFF
Turn Cursor OFF.

Locate

LOCATE x,y
X : X-axis position of LCD
Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ' Move cursor to 1,1
PRINT “COMFILE”

215

Print

PRINT String / Variable
String : String
Variable : When using variables/constants,
String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer,
GPRINT command can be used.

LOCATE 1,1 ' Move to position 1,1
PRINT “COMFILE”,DEC I

PRINT

Layer

LAYER layerimode, layer2 mode, layer3 mode
Layerimode : Set Layer 1 mode (0=off, 1=on, 2=flash)
Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Set the mode of the specified layer. The flash mode will flash the layer at
16Hz. Layer 1 and 2 are ON and Layer 3 if OFF when LCD is first turned
ON.

Use this command to hide the process of drawing lines, circles, and etc...

Set the layer OFF when drawing and set the layer ON, when you are
finished drawing everything.

216

GLayer

GLAYER layernumber
Layernumber : Set the graphic layer. (0,1,2)

There are 3 layers of GHLCD GHB3224 series. One of the layers may be
used as graphic layer. Graphic commands such as LINE, CIRLCLE, and
BOX can be used for the layer set a the graphic layer. Normally, Layer 1 is
used for text while Layer 2 is used for graphics. Layers 2 and 3 have slight
different characteristics. We recommend Layer 2 for graphics that require
a lot of erasing.

Layer 1 can also be used as graphic layer. In this case, you can even erase
text characters with graphic commands. To set Layer 3 to graphic layer,
use command LAYER to turn Layer 3 ON to use Layer 3.

Overlay
OVERLAY overmode
overmode : Logical Mode (O=or, 1=and, 2=xor)

This command Overlay determines the logic mode between Layer 1 and
Layer 2.

Layer 1 is text and Layer 2 is graphics.

By using this command, the user can decided what to do when Layer 1 and
Layer 2 are displaying on the same position. The default is XOR, which will
invert when Layer 1 and Layer 2 print to the same positions. To no invert,
you can set this to OR state.

Contrast

CONTRAST value
value : Contrast Value

Control the contrast of the LCD with CONTRAST command.

Contrast 450

217

Light
LIGHT value
value : Back light 0=OFF, 1=ON

Turn back light ON and OFF. Default is ON.

Wmode

WMODE value
value : 0=FAST, 1=SLOW

Record data to the LCD. To draw pictures or print characters to the LCD,
you must write to the memory in the LCD. When writing in the FAST mode,
there could be a chance that the LCD screen gets affected by snow effect.
In order to reduce this effect, you can set the writing mode to SLOW mode.

When too many commands are sent to CUTOUCH, there might be cases
where it will not be able to draw everything. In this case, you can use the
Waitdraw command to wait for CUTOUCH to finish the current drawing
commands before continuing.

*You can only use Waitdraw command in CUTOUCH. GHLCD does not
support this command.

218

Font

FONT fontsize, efontwidth
fontsize : 0~8 Font Selection
efontwidth : 0 = fixed width, 1=variable width

GHB3224 has 4 different size and 2 different width.

Font Type Font

0,1 10x 16
2,3,4,5 16 x 16
6,7 24 x 24
8 48 x 48

Const Device = cT1700

Cls
Delay 100
Font 0,0

Glocate 10,10

GPrint "FONT 0,0 :ABCDEFGHIJKLMN"
Font 2,0

Glocate 10,30

GPrint "FONT 2,0 :ABCDEFGHIJKLMN"
Font 6,0

Glocate 10,50

GPrint "FONT 6,0 :ABCDEFGHIJKLMN"
Font 8,0

Glocate 10,72

GPrint "FONT 8,0 "

Font 0,1

Glocate 10,120

GPrint "FONT 0,1 :ABCDEFGHIJKLMN"
Font 2,1

Glocate 10,140

GPrint "FONT 2,1 :ABCDEFGHIJKLMN"
Font 6,1

Glocate 10,160

GPrint "FONT 6,1 :ABCDEFGHIJ"
Font 8,1

Glocate 10,185

GPrint "FONT 8,1 "

219

Style
STYLE bold, inverse, underline
bold : 0=Normal, 2 or 3 =Bold

inverse : 0=Normal, 1=Inverse
underline : 0=Normal, 1=Underline

You can use STYLE command to add Bold, /MAX
Inverse, or Underline to your fonts. MAX Z—
MAX

220

BOLD

INVERSE

UNDERLINE

Cmode

CMODE value
value : 0=BOX type, 1=Underline type

Choose the type of cursor to use. Default [0:BOXType

is the Underline type.
— 1:UnderLine Type

Line

LINE x1,y1, x2, y2

Draw a line from x1,y1 to x2,y2. ,

LINE 10,20,100,120 ' Draw line

Lineto

LINETO x,y

Draw line from the last point to x,y. .

LINETO 200,50

\

Continue drawing line from the last point

Box

BOX x1,y1, x2, y2

Draw a box with diagonal positions of X1,Y1 and
X2,Y2.

BOX 10,20,200,100 ‘ Draw box

221

Boxclear

BOXCLEAR x1, y1, x2, y2

Clear the box with diagonal positions of X1,Y1
and X2,Y2.

BOXCLEAR 10,20,200,100 ' Clear box '

Boxfill

BOXFILL x1, y1, x2, y2,logic
logic : 0=OR, 1=AND, 2=XOR

Draw a box with diagonal positions of X1,Y1 and
X2,Y2 and fill according to specified logic. -
0 OR will display all overlapped areas.

1 AND will display only the overlapped areas.

2 XOR will display the overlapped areas
inversed.

BOXFILL 10,20,200,100,0 ‘ Draw and fill box

Circle

CIRCLE x, y,r

Draw a circle with center of circle at x,y, and r

o
as radius.
CIRCLE 200,100,50 ' Draw circle O

222

Circlefill

CIRCLEFILL x,y,r
Draw a circle and fill with center of circle at
X,y, and r as radius.

CIRCLEFILL 200,100,50

\

Draw and fill circle

Ellipse
ELLIPSE x,y,r1,r2

Draw an ellipse with center of circle at x,y, and
rl as horizontal radius and r2 as vertical radius.

ELLIPSE 200,100,100,50 ' Draw ellipse

Elfill

ELFILL x,y,r1,r2

Draw an ellipse and fill with center of circle at
x,y, and rl as horizontal radius and r2 as
vertical radius.

ELFILL 200,100,100,50

\

Draw and fill ellipse

Glocate

GLOCATE x,y
Locate new position for the graphic layer.

GLOCATE 128,32 ' locate new position
Gprint “CUTOUCH”

CUTOUCH

223

Gprint

GPRINT string

Print String on the graphic layer. You have
more freedom in the graphic layer as you can
use GLOCATE to specify exact position. Then CUBLOC IS FASTER
you can use this command GPRINT to print a
string at that location.

GPRINT “CUBLOC IS FASTER”,CR

\

Print String and go to next line(CR)

Dprint

DPRINT string
DPRINT is similar to GPRINT except it will over-write the current graphics.

DPRINT “WE LOVE CUBLOC”,CR ' Print String and go to next line

0 319

WE LOVE CUBLOC

239

This command will allow a much faster printing speed as it will simply
overwrite the background. When trying to display animations or numbers
that change rapidly such as moving ball or current time, Dprint will allow
smooth transitions.

Dprint can only be used with X-Axis that is multiple of 8.
For example, you can use Glocate 8,2 or Glocate 16,101.

224

Offset

OFFSET x,y

You can set offset for the printed strings on the graphic layer. The default
value is 0. You can control either the x or the y axis offsets.

CUBLOC IS FUN
COMFILE TECHNOLOGY

239

OFFSET 3,3 ' Set x and y offset to 3.

0 319

CUBLOC IS FUN
COMFILE TECHNOLOGY

239

After the command, the strings will automatically adjust to the new offsets.

225

Pset

PSET x,y

Place a dot on x,y

\

PSET 200,100 Place a dot

Color

COLOR value

Set the color of LCD. 1 is black and 0 is white. Default value is 0.

\

COLOR O Set color to 0.

Linestyle

LINESTYLE value

Set line style using this command. You can make dotted lines by increasing
the value. The default value is 0, a straight line.

\

LINESTYLE 1 Use dotted lines

Dotsize

DOTSIZE value, style

Set the dot size. Value is the size of the dot and style can either be 0 for
rectangular or 1 for circular dot.

\

DOTSIZE 1,1 Set dot size to 1 and dot type to circle

226

Paint

PAINT X,y
Fill the enclosed area within position x,y.

PAINT 100,100 ' Fill the enclosed area
within 100,100

Arc

ARC X, y, r, start, end

Draw an arc with x and y as the center.
Start and end are the values between 0 and

360 degrees. /_\

ARC 200,60, 100, 10, 20 ' Draw an arc
from 10 to 20 degrees. 239

Defchr

DEFCHR code, data
Code : Custom character code (&hdb30 ~ &hdbff)
Data : 32byte bitmap data

Create custom characters using this code. A character of size 16 by 16 can
be created and stored in the LCD memory. Then the character can be used
just like any other regular character using the command PRINT or GPRINT,
DPRINT. Total of 207 custom characters can be stored in the memory.

At power off, the characters are not preserved.

DEFCHR &HDB30, &HAA, §HAA, GHAR, §HAA, ¢HAA, §HAA, GHAR, §HAA,
GHAR, §HAA, GHAA, §H55, ¢HAR, §HAA, GHAR, §HAA,
SHAR, §HAA, GHAA, §HAA, GHAR, §HAA, GHAR, §HAA,

&HARA, §HAA, &HAA, &HAA, &HAA, &HAR, &HARA, §HAA

print CHR (&HDB30)

227

Bmp

BMP X, y, filenumber, layer
X, y : X,y position to display BMP
Filenumber : BMP File number
Layer : Layer to display BMP

GHB3224has FLASH memory to store BMP files. Use the BMP Downloader
to download BMP files. Once BMP files are stored in the LCD, you can
simply use this command BMP to print to the LCD.

*The GHB3224 has 102,400 bytes of Flash memory space to store BMP files.
You can store about 10 of 320x240 full screen size files.

This command is not available in CUTOUCH.
Graphic Data PUSH, POP Commands

On the GHB3224 series, there is a separate stack for storing graphic data.
You can push and pop current screen or part of the current screen to this
stack. By storing to the stack, you can easily implement a copy, cut, and
paste feature, similar to text editors.

GPUSH and GPOP can be used for precise cutting of the current screen while
HPUSH and HPOP can be used for high speed push and pop.

The stack is a LIFO (Last in First out) that will pop the last data that was
pushed.

There is about 32KB of Stack memory. You can store about 3 to 4 full
screens. Please refer to the picture below for how the stack works:

228

Gpush

GPUSH x1, y1, x2, y2, layer
Push x1,y1 to x2, y2 box to the stack.

GPUSH 10,20,200,100,2

Gpop
GPOP x, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Pop from stack and display on the specified layer at position x,y with
specified logic.

GpOP 120,20,2,0

AL
%

229

Gpaste
GPASTE X, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Paste from stack and display on the specified layer at position x,y with
specified logic.

This is exact same command as GPOP except it will not pop from stack.
Therefore, you can use this command if there is further need to use the
current item in stack.

230

Hpush

HPUSH x1, y1, x2, y2, layer

HPUSH, HPOP, HPASTE commands are similar to GPUSH, GPOP, and
GPASTE except that the columns can only be multiple of 8 as shown below:

*The 320 pixels have been divided by 8, there are only 40 columns, each 8
pixels wide.

1
1

RN
PN
o=
o=
~ =
0=
©

111
0123456789012

239

HPUSH 6,20,12,100,2
Hpop
HPOP x, y, layer
Same as GPOP, except x value is 0 to 39.

HPOP 10,20,2,0

Hpaste

Hpaste x, y, layer,

Same as GPASTE except x is between 0 and 39.

231

GHB3224C DIP Switch Settings

On the back of the GHB3224B, there are DIP switches to set the RS232

baud rate and I2Cslave address.

used.

Please choose one communication method to use at a single time.

DIP Switch RS232 Baud Rate I12C Slave
Address
12 3
ON
S 2400 0
12 3
ON n
am 4800 1
12 3
ON |]
. 9600 2
12 3
ON _HHN 19200 3
12 3
ON|H
am 28800 4
12 3
oNE ®m
- 38400 5
12 3
oNmm
- 57600 6
12 3
oNmEmE 115200 7

CuNET or RS232)

232

GHB3224 DIP Switch number 4 is not

(Either

Seven Segment Display
CSG Series

The seven segment display can be used to display numbers. 8 LEDs are
used for most seven segment displays as shown below.

To incorporate a seven segment display into products, in the past, people
had to create a dynamic display method that is very complicated for the
average user. To simplify the matter, we have developed an easy to use
seven segment display called the CSG module.

- I'I]

1. 1. 1. 1.

As you can see above, the front has 4 digit seven segment display and the
back has two I2C connections. After connecting the CSG to CUBLOC, you
can use the commands in the below table to easily and quickly display
numbers you want.

Command Explanation Example Usage
CSGDEC SlaveAdr, Data Output decimal value. CSGDECO, I
CSGHEX SlaveAdr, Data Output hex as decimal value CSGHEX 0,1
CSGNPUT SlaveAdr, Digit, | Control digit places CSGNPUT 0,0,8
Data
CSGXPUT SlaveAdr, Digit, | Control digit places and output data | CSGNPUT 0,0,9
Data as binary number

233

Csgdec

Use CSGDEC command to print decimal values to the SGN.

Const Device = cb280
Set I2c 9,8 ‘€-- must be used before csgdec command
b=8
Do
Csgdec 0,b ‘€-- csgdec command
Delay 100
b=Db+1
If b=0 Then b=200
Loop

To use CSG commands,
SET 12C command must be used beforehand.

Slave Address

Set the slave address of the CSG module at the back. 0 to 3 can be set. A
total of 4 addresses can be set per 12C line pair.

CSG Dip switch:

DIP Switch Slave Address
123

o l.l 0
123

ON - HE 1
12 3

o ll. 2
123

ON ... 3

234

To display more than 4 digits, use 2 CSG modules like shown below and set
different slave addresses for each.

oooQoooOoo
Ol 0. 1. 0.0, 0. 1. .

Csgnput

CSGNPUT slaveadr, digit, data
slaveadr : CSG module Slave Address
digit : Digit position (0~3)
data : Data (&h30 to &h39, &h41~&h46)

&h30 is print “0”
&h31 is print “1”

&h39 is print “9”
&h41 is Print "A”
&h42 is Print “b”
&h46 is Print “F”

Display the desired number to the specified CSG module. DATA most
upper bit is for setting the DOT of the CSG.

You can use &H30~39 and &H41~&H46 only.

235

Csgxput

CSGXPUT slaveadr, digit, data
slaveadr : CSG module Slave Address
digit : Position (0~3)
data : Data

Set the LED ON at the specified position. When displaying anything other
than numbers, this command can be used to control each position of the

LED itself.
A
]
F, ,B
G
——
I
oy
D
Bit 7 6 5 4 3 2 1 0
LED H G F E D C B A
To print character 'L’, positions D, E, and F must be turned ON. Since the

bit value would be 0011 1000, in hex that's &H38 or 0x38.
CSGXPUT 0, 0, &H38 would be the exact command to use.

Csgdec

CSGDEC slaveadr, data
slaveadr : CSG Slave Address
data : Data

Print decimal value to the CSG.

Csghex

CSGHEX slaveadr, data
slaveadr : CSG Slave Address
data : Data

Print hexadecimal value to the CSG.

236

Chapter 8
Interface

Input/Output Circuits

How to connect LEDs
Please connect the LED as shown below and output HIGH to the connected
I/0 port to turn the LED ON.

330 ohm
= CuBLOC 1/0 Port

How to connect push-switches

Please connect the push-switch as shown below and set the connected 1/0
port to INPUT mode. When the switches in pressed, CUBLOC will read HIGH
and when LOW otherwise.

T~
CuBLOC I/0O Port

10Kohm

How to connect Volume knob
Please connect the Volume knob as shown below to a A/D I/O port and use
ADIN command to read the input value of the Volume knob.

10Kkohm S4¢——0O CuBLOC 1/O Port

The CUBLOC core module uses 5V power. When using larger voltage,
please use appropriate voltage converter or regulator.

238

How to Connect a Output Relay.

The following diagram shows how to connect a output relay to a CUBLOC
I/O port. A photocoupler can be used to separate 24V and 5V and protect
against noise. Noise coming from 24V side will not affect the 5V side and
vice versa.

CuBLOC
1/0 Port

How to Connect a NPN TR Output

This circuit diagram shows a NPN TR photocoupler separating 5V from the
LOAD.

24V +

CuBLOC
+
1/0 Port ?‘r =
o ¥ W G LOAD
o 47K o

How to Connect DC24V Input
Use a double polarity photocoupler to convert 24V signals to 5V. When
input is received, CUBLOC will receive a HIGH(5V) signal.

CuBLOC otuF 47K

1/0 Port Oj__/vv\,__[
680 XA }ﬁg
.
”Wmi KPC714
BV

239

How to connect AD Input

To connect an AD input to the CB280, AVDD and AVREF pins must be
connected to 5V. AVDD supplies power to the ADC of CUBLOC and AVREF
is the reference voltage that the ADC uses to do conversions. If 5V is
inputted to AVREF pin, 0 to 5V input voltage will be converted and if 3V is
inputted to AVREF pin, 0 to 3V input voltage will be converted.

DC5V
DC5V
W DC5V
souT | 1@ 17 VDD TX1 [33 @ @ 49 | TTLTX1
sIN| 2@ @18 vss RX1 [34 @ @ 50 | TTLRX1
ATN | 3@ @ 19 RES AvDD L35 @ @ 51 | AVREF
vss | 4@ @ 20 N/C N/C 36 @ @ 52 | P48
PO| 5@ @21 P16 P24 37 @ @ 53 | P31
P1| 6® @22 P17 P25 38 @ @ 54 | P30
P2| 7@ @23 P18 P26 39 @ @ 55 | P29
P3| 8® @24 P19 P27 40 @ @ 56 | P28
P4l 9@ @25 P20 P47 41 @ @ 57 | P32
P5 [10@® @ 26 P21 P46 42 @ @ 58 | P33
P6 |11® @27 P22 P45 43 @ @ 59 | P34
P7 |12@® @ 28 P23 P44 44 @ @ 60 | P35
P8 [13@® @29 P15 P43 45 @ @ 61 | P36
P9 |14@® @ 30 P14 P42 46 @ @ 62 | P37
P10 [15@® @ 31 P13 P41 47 @ @ 63 | P38
P11 [16 ® @ 32 P12 P40 48 @ @ 64 | P39

The CB220’s AVDD and AVREF are internally connected to 5V.
The following is the simplest type of AD input circuit using a Volume knob.

When you turn the knob, the input will be converted by the CUBLOC ADC to
a value from 0 to 1023

5V

10kohm s4¢—O CUBLOC 1/0O Port

240

The following is AD input that receives 4 to 20mA of input. You can use a
230 Ohm and 20 Ohm resistors in serial instead of a 250 Ohm resistor.

4~20mA CUBLOC 1/0O Port
2500hm

For O to 10V of input, use 2 resistors as shown below. This is also called a
voltage divider.

1Kohm
0~10V CUBLOC 1/0 Port

1Kohm

How to use PWM as Digital-to-Analog converter

CUBLOC has 6 PWM ports. If you use the simple circuit shown below, you
can make a D/A converter.

10Kohm

Ut w—1~0 CUBLOC PWM Por

47uF

i

241

RS232 HOWTO

Pin 1 and 2 are for connecting to the +/- 12V signals of RS232 Channel 0

(Download port).
Channel 1 5V signals.

+12V

-12v

The CB220 model has ports 10 and 11 for RS232

For CB280, there is are 5V and 12V signals for RS232C Channel 1.

+12V;
+— sout
—> sn
ATN

-12v

The reason for two 5V and

uses RS232 12V signals, we will need to

<«——sout 01 S~ 2ah vin
—sn g2 230 vss
ATN O3 220 RES
vss g4 2103 voo
PO Os 200 P15
P1 Q6 190 P14
P2 g7 180 P13
P3 Os 17 P12 45V
P4 Qo 160 P11 ——
Ps O 10 15[P10 ¢——
P6 O 11 140 Po GND
P7 Q12 13Q Ps
“2v1|_|_|_|_|_|_|_|f
“12v
1® @17 vop Ll:m 3@ @49 | TTiXi—> W +5V
2@ @15 vss H R 34 50 [TTLRX €—
3@ @19 Res AVDD GND
vss| 4@ @20 nic nic
Po[5® @21 pis P2s
Pilc® @2 pir P25
P2 (70 @25 pis P26
i[5 @25 pio P27
Pifo® @25 P20 pa7
Ps 100 @26 P2y Pas
P [110 @27 P22 pas
P7 (120 @25 P23 pas
P (130 @29 pis P43
Po[11@ @30 pis paz
P10 [15@ @31 pi3 P4t
P11 15@ @32 P12 2

make a separate circuit for

converting to 5V signals for CUBLOC.

But since there are 12V signal outputs, the user doesn’t have to worry
about making a separate circuit.
For downloading to CUBLOC, it is very easy since you can connect a PC
cable directly to pins 1 and 2.
signals are provided for RS232 Channel 1.

242

For RS422 and RS485 conversions, 5V

For CB280, 12V signals are provided for RS232 communication. Please be
careful to use only one of the 5V or 12V connections at one time.

The following shows a simple circuit diagram of RS232 conversion from 12V
to 5V signal using a MAX232 chip.

PC
RS232C
Port

12 [} CuBLOCRX
11 [J&——— CuBLOCTX
1003

9

CECTXVIN

s

MAX232 is a very useful chip for converting between 5V and 12V of RS232
signals.

® MAX232 [116
115

O

O

(N 1 14 Rrs2s2c ouTPUT
O] 13 Rs232CINPUT
(N Ej 12 TTLOUTPUT
O 111 TILNPUT

O

O

(_'Q 110 TmineuT
l’>0 119 Tmouteur

RS232C OUTPUT

RS232C INPUT

243

CuNET

CuNET is a communication protocol for CUBLOC peripherals such as CLCD,
GHLCD, CSG modules. With just 2 pins, SCL and SDA, you can
communicate with up to 127 devices simultaneously. CuNET uses
CUBLOC's I2C protocol to communicate.

To use CuNET, please make sure to add pull up resistors(4.7K each) to the
SCL and SDA lines. SCL and SDA pins are in a open-collector style,
protecting against outside noise. It automatically removes pulses less than
50ns.

SouT O 1 O VIN

SIN 02 231 vss I

ATN [3 221 RES

vss O 4 213 vDD

Po 5 20 P15 1 GND
P1 O6 190 P14 2 5V (RESET)
P2 O7 181 P13 SCL
P3 Os8 173 P12 3 SDA
P4 o 16 P11 4

P5 [10 151 P10

P6 O 11 140 P9

P7 O 12 130 P8

4.7Kohm x 2

For using CuNET, the 4 pin connector’s pin 1 must be connected to ground,
pin 2 to 5V or RESET, pin 3 to SCL, and pin 4 to SDA. This 4 pin connector
will be used as standard for CUNET communications.

When using CuNET, the CUBLOC core module will act as the “master” and
the device connected to as the “slave”. All CuNET devices will respond to
CUBLOC while in idle state.

CuNET operates in a Master-Slave mode. Slave cannot start
communication with the master. For this type of communication, you must
use PAD communication. PAD can receive inputs from other devices.
Please refer to ON PAD command for detailed information.

244

CuNET device’s connector’s pin 2 connects to 5V of the main module:

Power

GND
5V
SCL
SDA

MAIN

|1 lbh'
L
a
<

CuNET Module

CuNET device’s connector’s pin 2 connects to RESET of the main module
when power is supplied to the CUNET device. (Active LOW to RESET

causes CUBLOC to reset)

Power

o] | w1
T T

RESET RESET

(7]
o
e

|I X Dl
[XX
»
o
e

SDA SDA

CuNET Module

MAIN

CuNET lines can be used within 3 feet. For longer communications(up to
about 1mile), you can use Phillips 12C Long distance interface chip. (P82B96

or P82B715)

245

CUBLOC STUDY BOARD Circuit Diagram

Study board is especially for first timers and developers of CUBLOC.
Simple experiments including switches, LED, RS232 communication, 12C,
piezo, ADC, toggle switches, and LCDs are included. Communication
protocol CuNET, I2C, and LCD connections are also provided.

(1) RS232 CH1
O Contact (2) CB280 TX/RX

PIEZO Contact

Download Port

Reset Switch

Contact
(LED, S/Ws)

(3)ALCD
Connector

1/0 Ports
Contact

@
\GUBLOC STUDY B0ARD 1
O oooooag

CuNET

(4)CuNET
Jumper

Bread Board

DC 9V INPUT RS232 CHANNEL 1 POWER S/W

When 9V is inputted, the 5V regulator inside the Study Board will
automatically provide 5V to the module and peripherals. DC Adaptor
polarity can be used either way. For normal operation, please use a 9V
adaptor with at least 200mA of current.

246

Cubloc Study board 1 Schematic

5V(VDD)

// /177
/ GN%\;TSS)) \
/ n=en, Bepd:

RESET
! — = = DOWNLOAD o= TLRX
I & E! PIEZO
e =
| o o 5 =—]
ey | T2 cs2205—]
—= =]
5—
= =]
= 5— EEEEEEEE MELMML
B =—]
= =—] LED AD TOGGLE PUSHSW T ALCD
= =1
i o = — 112134 15 1617 819202228
GND = g
mol cB280 — —

1

SEEEEEEE

o WP FF O [
N

\
dddddyyg e

! !
L K ’I’ 5 3 %
PUSHSW I‘T +T *? *T IJ

=

1 2 3 4 5

] o

-

i

(1) RS232 Channel 1 Connection point : to use the RS232 Channel 1,
please connect wires to the appropriate pin input on the upper right hand
corner labeled RS232C.

(2) For CB280, connect RS232 Channel 1 as shown below:

Tx[g%r ST
Rx[gg]RX

(3) For using CuNET, all jumpers must be shorted. If using pin 8 and 9
directly, please leave all jumpers to open state.

247

About I2C...

CUBLOC provides easy set of commands to communicate using I12C protocol.
I2C communication is a widely used protocol, mainly used for
communicating with ADC, EEPROM, DAC, External I/O chips.

12C uses two lines, SDA and SCL, and operates in either MASTER or SLAVE
mode. CUBLOC can only be used as a MASTER.

Please make sure to use command SET I2C before using I2C commands.

I2C’'s START, STOP

When SCL(Clock) and SDA(Data) are HIGH, I2C is in idle state. If START
command is executed during idle state, I12C begins.

When SCL and SDA are both LOW, I2C is in busy state. If STOP command
is executed during busy state, 12C stops.

There is also a Repeated Start in I2C. If START command is executed
during busy state, I12C Restarts.

n : P P

SDA B | n i i
! I I |}

‘ ! i ™

| | SRS

i : o P

i
START STOP Repeated STOP
Start

248

Using EEPROM through I2C

We will go through an example showing I2C communication between
CUBLOC and EEPROM 24LC32. The following is a picture taken from the
EEPROM’s data sheet. It shows how to send data to the EEPROM.

R/W

[S[CONTROLBYTE [O[A[HIGHADDRESS [A[LOWADDRESS [A[DATA) [A[P]

“““““““ P S Sl B

S : Start
A:Acknowledge
P : Stop

The first bit is for Start command. The 4 upper bits of CONTROL BYTE
must be 1010 and the 3 lower bits are for selecting the Chip’s address. The
user may change the EEPROM chip’s address by configuring the chip.

For a read, 1 can be written for R/W and for a write, 0 can be written for
R/W. A is for acknowledgement of the 8 bits(1 byte) sent. Then HIGH
ADDRESS, LOW ADDRESS and DATA can be sent. When all data are sent,
Stop command can be sent.

It takes about 5ms of time for EEPROM write.

The following is a write EEPROM sequence in CUBLOC's BASIC code:

Set I2c 8,9 ' Set pin as SDA, pin 9 as SCL

I2cstart

If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite(ADR.BYTEl) = 1 Then ERR PROC ' ADDRESS WRITE
If I2cwrite (ADR.LOWBYTE) = 1 Then ERR_PROC

If I2cwrite(DATA) = 0 Then ERR PROC 'l Byte WRITE
I2cstop

Delay 5 ' Wait until WRITE is done

Next, we will look at how to read 1 byte from the EEPROM. Although it
might look more complex than writing 1 byte, we will soon find out that
they are very similar.

249

R/W Repeated Start R/W NoAck

v v
(s conRotsyE Jo[A] méracoress, [A] [towaopress [A[s] controceyre [1[A[| | pam | | [X[P]
S : Start
A:Acknowledge .
P Stop Read Point

Read Point is where the actual DATA will be read from the EERPOM. The
front part of the command is for setting the address to read data.

Set I2c 8,9

I2cstart

If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite (ADR.BYTEl) = 1 Then ERR PROC ' ADDRESS WRITE
If I2cwrite (ADR.LOWBYTE) = 1 Then ERR PROC

I2cstart ' Repeated Start

If I2cwrite(&H10100001) = 1 Then ERR PROC ' Read command. .
DATA = I2cread(0) ' Result store in DATA.
I2cstop

And now, we will look at how to read multiple data from the EEPROM.
Without using the STOP command, we can keep reading from the EEPROM
since it automatically increments its address.

In this way, we can set the address to read from only once, and then read
the rest of the data much faster.

Set I2c 8,9

I2cstart
If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite (ADR.BYTE1l) = 1 Then ERR PROC ' ADDRESS WRITE
If I2cwrite (ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR PROC ' Read command. .
For I = 0 To 10
ADATA (I) = I2cread(0) ' Read 10 bytes continuously,
' ADATA is an array
Next
I2cstop

250

I2c example

The following example shows CB280 and EEPROM 24LC32 connected. A
value will be written to a specified address of the EEPROM and then read

back to display on the DEBUG window of CUBLOC Studio.

Const Device = cb280
Dim adr As Integer
Dim data As Byte
Dim a As Byte

data = &hal

adr = &h3
Set I2c 3,2
Do

' Write 1 Byte
I2cstart

If I2cwrite(&b10100000)= 1 Then Goto err proc

a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
a=I2cwrite (data)
I2cstop

Delay 1000

' Read 1 Byte

I2cstart

a=I2cwrite (&10100000
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
I2cstart

a=I2cwrite (&010100001
a=I2cread(0)

CB280

I2cstop
' Print Results
Debug Hex a,cr 241.C32
Delay 500
Loop
Ao SCL
err proc: Al SDA
Debug "Error !" A2
Do
Loop

P2
P3

251

MEMO

252

Chapter 9
MODBUS

About MODBUS...

MODBUS is a protocol developed by MODICON to help interface peripherals
for their PLCs.

It is usually used with devices like Touch screens, HMI devices, and SCADA
software. A lot of Touch screen panels, HMI and SCADA software now
days support MODBUS.

In MODBUS, there is Master and Slave mode. The Master provides data
while the Slave receives the data. The slave can only respond to master
and cannot communicate on its own.

Each slave has a unique address called Slave Address. The Master, using
those Slave Addresses, can talk to one of the slaves at a time.

For 1 to 1 connections, RS232 can be used. For 1 to N connections, RS485
can be used.

The master sends messages in units of “Frames”. Each Frame contains the
Slave address, command, Data, Error Checksum codes. Slave receives a
Frame and analyzes it. When responding to the Master, Slave also sends in
“Frames”.

In other words, MODBUS send and receive can be seen as composed of
Frames that are sent and received.

There are two types of MODBUS, ASCII and RTU. RTU type can be
implemented by using less bytes in the communication.
ASCII use LRM for error checking and RTU uses CRC.

The next is how ASCII and RTU are used:

Field Hex ASCIIL RTU
Header : (colon) None
Slave Address 0X03 03 0X03
Command 0X01 01 0x01
Start Address HI 0X00 00 0X00
Start Address LO 0X13 13 0X13
Length HI 0X00 00 0X00
Length LO 0X25 25 0X25
Error Check LRC (2 Bytes) CRC(2 Bytes)
Ending Code CR LF None
Total Bytes 17 Bytes 8 Bytes

254

ASCII type uses a colon (:) to start and ends with CR or LF.

START

SLAVE ADR

FUNCTION

DATA

LRC

END

: (COLON)

2 Bytes

2 Bytes

n Bytes

2 Bytes

CR,LF

RTU requires no special characters to start and finish.
blank space to indicate start and finish.

It uses 4 bytes of

START SLAVE ADR | FUNCTION DATA CRC END
T1-T2-T3- 1 Byte 1 Byte N Bytes 1 Byte T1-T2-T3-T4
T4

CUBLOC supports MODBUS command & Address

CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read

03, 04 Word Write

05 1 Bit Write

06 1 Word Write

15 Multiple Bit Write
16 Multiple Word Write

In MODBUS, there are addresses which stand for relays in CUBLOC.
CUBLOC's relays P, M, F, C, T, and D can be accessed using the following

table:
Bit Units Word Units

Address Relay Address Relay

0000H P

1000H M

2000H Not Used

3000H Not Used

4000H F
5000H T
6000H C
7000H D
8000H WP
9000H WM
0AQ00H WF

255

Function Code 01,02 : Bit Read

This function code can read the bit status of PLC’s relay. The following is an
example of reading relays P20 through P56 from Slave Address of 3.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X01 01 2
Start Address HI 0X00 00 2
Start Address LO 0X14 14 2
Length HI 0X00 00 2
Length LO 0X25 25 2
Error Check LRC 2
Ending Code CR LF 2

LRC is the 2's complement of 8-bit sum of all values except Colon, CR, and
LF.

For the table above, 0x03 + 0x01 + 0x13 + 0x25 = 0x3C.

To fin d the 2’s complement of O0x3C, we can write it in binary first.

0011 1100

Then we can invert the bits.
1100 0011

Then add one which is:
1100 0100 = 0xC4
LRC = 0xC4

ASCI : 0 3 0 1 0 0 1 3 0 0 2 5 C 4

Hex 3A | 3 3 3 3 3 3 3 3 3 3 3 3 4 3 13

256

Response to the query above is ..

Response:

Field Hex ASCIIL Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0Xx01 01 2
Byte Count 0X05 05 2
Data 1 0X53 53 2
Data 2 0X6B 6B 2
Data 3 0X01 01 2
Data 4 0XF4 F4 2
Data 5 0X1B 1B 2
Error Check LRC 2
Ending Code CR LF 2

If you look at the response to the query, you can see that bit 20 through 27
makes one byte.

P20 is placed as LSB of Data 1 and P27 is placed as MSB of Data 1.

Likewise we can acquire all of P20 through P56 and the left over bits can
just be disregarded.

257

Function Code 03,04 : Word Read

This function code can read 1 Word (16 bits), usually used for Counters,
Timers, and Data relays. The following shows an example that reads Slave
Address 3’s D relay 0 to 2.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X03 03 2
Start Address HI 0X70 70 2
Start Address LO 0X00 00 2
Length HI 0X00 00 2
Length LO 0X03 03 2
Error Check LRC 2
Ending Code CR LF 2

1 Word is has 2 bytes, so we are going to get 6 bytes total as response.

Response:
Field Hex ASCII Bytes

Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X03 03 2
Byte Count 0X06 06 2
Data 1 LO 0X03 03 2
Data 1 HI OXE8 ES8 2
Data 2 LO 0X01 01 2
Data 2 HI O0XF4 F4 2
Data 3 LO 0X05 05 2
Data 3 HI 0X33 33 2
Length LO 0X03 03 2
Error Check LRC 2
Ending Code CR LF 2

258

Function Code 05 : 1 Bit Write

PLC’s can remotely control the status of its relays in units of bits through
this function code. The following is an example showing Slave Address 3's
P1 Relay being turned ON.

To turn ON relays, FF 00 is sent and to turn OFF relays, 00 00 is sent.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X05 05 2
Start Address HI 0X01 01 2
Start Address LO 0X00 00 2
Length HI OXFF FF 2
Length LO 0X00 00 2
Error Check LRC 2
Ending Code CR LF 2

The response shows that the data was entered correctly.

You MUST use FF 00 and 00 00 to turn ON/OFF relays, other values will

simply be ignored.

Response:

Field Hex ASCIIL Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X05 05 2
Start Address HI 0X01 01 2
Start Address LO 0X00 00 2
Length HI OXFF FF 2
Length LO 0X00 00 2
Error Check LRC 2
Ending Code CR LF 2

259

Function Code 06 : 1 Word Write

PLC’s can remotely control the status of its relays in units of Words through
this function code.
The following is an example showing Slave Address 3’s D1 being written.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X06 06 2
Start Address HI 0X70 01 2
Start Address LO 0Xx01 70 2
Length HI 0X12 12 2
Length LO 0X34 34 2
Error Check LRC 2
Ending Code CR LF 2
Response:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X06 06 2
Start Address HI 0X70 01 2
Start Address LO 0X01 70 2
Length HI 0X12 12 2
Length LO 0X34 34 2
Error Check LRC 2
Ending Code CR LF 2

260

Function Code 15: Multiple Bit Write

PLC’s can remotely control the status of its relays in units of multiple bits
The following is an example showing Slave

through this function code.
Address 3’s P20 through P30 being turned ON/OFF.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code O0XOF OF 2
Start Address HI 0X00 00 2
Start Address LO 0X14 14 2
Length HI 0X00 00 2
Length LO 0X0B 0B 2
Byte Count 0X02 02 2
Data 1 0XD1 D1 2
Data 2 0X05 05 2
Error Check LRC 2
Ending Code CR LF 2

Below table shows how the DATA in the above query is divided.

first Byte. There will be total of 2 bytes sent in this manner.

can be set to zero.

P27 is
placed in the MSB of the first Byte send and P20 is placed in the LSB of the
Left over bits

Bit 1 1 0 1 0 0 0 1 0 1 0 1
Rela P27 P26 P25 P24 P23 P22 P21 P20 P30 P29 P28
Yy

Response:

Field Hex ASCII Bytes

Header : (colon) 1

Slave Address 0X03 03 2

Function Code O0XOF OF 2

Start Address HI 0X00 00 2

Start Address LO 0X14 14 2

Length HI 0X00 00 2

Length LO 0X0B 0B 2

Error Check LRC 2

Ending Code CR LF 2

261

Function Code 16 : Multiple Word Write

PLC'’s can remotely control the status of its relays in units of Multiple Words
at a time through this function code. The following is an example showing
Slave Address 3’s DO through D2 being written.

Query:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X10 10 2
Start Address HI 0X70 70 2
Start Address LO 0X00 00 2
Length HI 0X00 00 2
Length LO 0X03 03 2
Byte Count 0X06 06 2
Data 1 HI 0XD1 D1 2
Data 1 LO 0X03 03 2
Data 2 HI 0X0A 0A 2
Data 2 LO 0X12 12 2
Data 3 HI 0X04 04 2
Data 3 LO 0X05 05 2
Error Check LRC 2
Ending Code CR LF 2
Response:

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X10 10 2
Start Address HI 0X70 70 2
Start Address LO 0X00 00 2
Length HI 0X00 00 2
Length LO 0X03 03 2
Error Check LRC 2
Ending Code CR LF 2

262

Error Check

If there is error in the data from the Master, Slave will send back an error

code.

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0Xx81 81 2
Error Code 0X09 09 2
Error Check LRC 2
Ending Code CR LF 2

There are the following types of error codes:

Code Error Name Explanation

01 ILLEGAL FUNCTION When a non-supported function code is
received.

02 ILLEGAL DATA ADDRESS When an incorrect address is received.

03 ILLEGAL DATA VALUE When bad data is received.

09 LRC UNMATCH When LRC is incorrect.

263

MODBUS Master Mode (ASCII)

There are no special commands to set CUBLOC to Master Mode for MODBUS
communication. Master Mode simply needs to be able to use RS232 data
communication using commands like CUBLOC’s GET and PUT.

The following is an example of ASCII Master Mode implemented in CUBLOC
BASIC:

'Master Source

Const Device = cb280
Dim RDATA As String * 80
Dim a As Byte, ct As Byte
Dim b As String * 17
Dim Port As Integer

Opencom 1,115200,3,80,80
On Recvl Gosub GETMODBUS ' Data Receive Interrupt routine
Set Until 1,60,10 ' When Ending Code (10

' on Channel 1 is discovered,

' create an interrupt

Do
For Port=2 To 4
BitWrite Port, 1 'Turn PO,P1,P2 ON!
Delay 100
Next
For Port=2 To 4
BitWrite Port, O 'Turn PO,P1,P2 OFF!
Delay 100
Next
Loop
GETMODBUS :
If Blen(1,0) > 0 Then ' If buffer empty then
A=Blen(1,0) ' Store the buffer length in A!
Debug "GOT RESPONSE: "
B=Getstr(1,3) ' Store received data in B
Debug B
End If
Return

End
Sub BitWrite (K As Integer, D As Integer)
Dim LRC As Integer
Putstr 1,":0305"
Putstr 1,Hp(k,4,1)
If D=0 Then

264

Putstr 1,"0000"

LRC = - (3+5+K.Bytel+K.Byte0) 'Calculate LRC
Else

Putstr 1,"OOFF"

LRC = - (3+5+K.Bytel+K.Byte0+0xFF) ' LRC
End If

Putstr 1,Hex2 (LRC),13,10 'Send

End Sub

This is slave source.
' Slave Source
Const Device = cb280
Opencom 1,115200,3,80, 80
set modbus 0,3
Usepin 2, Out
Usepin 3, Out
Usepin 4, Out
Set Ladder On

Master Slave
rs232 1X RX rs232 Po——mw—pp™"
CH1 CH1 o w—t
RX >
P4 ——W—P——
GND GND r
CB280 CB280

When the Slave finishes processing the Data sent by the Master, the Slave
will jump to the label GETMODBUS. We can use SET UNTIL command to
check for ending code LF (10).

Then Getstr command is used to store all received data in RDATA.
The data in RDATA can be analyzed to verify if the communication was

achieved soundly or not.

When the slave is not connected, the program will never jump to
GETMODBUS.

265

MODBUS Master Mode (RTU)

The following is an example of RTU Master Mode implemented in CUBLOC
BASIC to read floating point values (2 Word Registers) from multiple RTU

slave devices:

Const Device = CB280

#define CHANNEL 1

#define REDE 10 'Pin number of REDE transmit/receive signal

lvarilalsles for MODEl§e—=—==—sm—————=——e——ee——=e=o===x

Dim a As Integer, ct As Byte
Dim msg(8) As Byte '

Dim rmsg(100) As Byte

Dim Result (100) As Single
Dim ID As Byte

Dim DataLength As Byte

Dim LabelStr As String

Dim DLength As Byte

Dim mode As Byte

Dim N As Byte ' Number of meters
Dim K As Byte

'Variables for CRC Calculations————-—————————=—————-—

Dim uchCRCHi As Byte, uchCRCLo As Byte
Dim dLen As Byte

Dim ulIndex As Integer

Dim CRC As Integer

Dim CRC2 As Integer

'Change this table and variable N to control

TAeviCes* % x %k sk ks k sk ok s ok sk ok sk ok sk ok ook Sk ok ok ok ok ok X ok K ok X ok X ok ok

'/* Table of Modbus RTU device IDs */

Const Integer DeviceIDs = (100, 53, 55, 57, 59, 61, 63,

'N = Number of Devices to read, change this for the number of

multiple

‘devices you want to read (# of devices in table above or less for

‘testing)
N =8
K =0 'Set K to ZERO!!!

'/* Table of CRC values For High.order Byte */

266

Const Byte auchCRCHi = (_
0x00, 0xCl, 0x81, 0x40, 0x0l, 0xCO, 0x80, 0x41, 0x0l, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81,_
0x40, 0x01, 0xCO, 0x80, Ox4l, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO,_
0x80, 0x41, 0x01, 0xCO, 0x80, Ox41l, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x0l,_
0xCO, 0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x01, 0xCO, 0x80, Ox4l,_
0x00, 0xCl, 0x81, 0x40, 0x0l, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81,_
0x40, 0x01, 0xCO, 0x80, Ox41l, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, Ox41l, 0x01, 0xCO,_
0x80, 0x41, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, Ox41l, 0x0L,_
0xCO, 0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81, 0x40,_
0x00, 0xCl, 0x81, 0x40, 0x0l, 0xCO, 0x80, 0x41l, 0x0l, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81,_
0x40, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO,_
0x80, 0x41, 0x01, 0xCO, 0x80, Ox41l, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x0l,_
0xCO, 0x80, 0x41, 0x01, 0xCO, 0x80, 0x41l, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, Ox4l,_
0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x0l, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81,_
0x40, 0x01, 0xCO, 0x80, Ox41l, 0x01, 0xCO, 0x80, O0x41, 0x00, O0xCl, 0x81, 0x40, 0x01, 0xCO,_
0x80, 0x41, 0x00, 0xCl, 0x81l, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, Ox41l, 0x0L,_
0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81, 0x40, 0x00, 0xCl, 0x81, 0x40, 0x01, 0xCO, 0x80, Ox4l,_
0x00, 0xCl, 0x81, 0x40, 0x0l, 0xCO, 0x80, 0x41l, 0x0l, 0xCO, 0x80, 0x41, 0x00, 0xCl, 0x81,0x40

Const Byte auchCRCLo = (_

0x00, 0xCO, 0xCl, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, OxOF, OxCF, O0xCE, OxOE, 0xO0A, 0xCA, 0xCB, 0xOB, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, OxDA, 0x1A, O0x1E, OxDE, O0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xDl, 0xDO, 0x10, O0xFO, 0x30, 0x31, OxF1l, 0x33, 0xF3, O0xF2, 0x32, 0x36, O0xF6, OxF7,_
0x37, O0xF5, 0x35, 0x34, 0xF4, 0x3C, O0xFC, OxFD, 0x3D, OxFF, 0x3F, Ox3E, OxFE, OxFA, Ox3A,
0x3B, O0xFB, 0x39, O0xF9, O0xF8, 0x38, 0x28, O0xE8, OxE9, 0x29, OxEB, O0x2B, 0x2A, OxEA, OxEE,
0x2E, 0x2F, OxEF, 0x2D, O0xED, OxEC, 0x2C, O0xE4, 0x24, 0x25, O0xE5, 0x27, O0xE7, O0xE6, 0x26,
0x22, 0xE2, OxE3, 0x23, 0xEl, 0x21, 0x20, OxEO, OxAO, 0x60, 0x6l, OxAl, 0x63, O0xA3, OxA2,
0x62, 0x66, OxA6, 0xA7, 0x67, OxA5, 0x65, 0x64, OxA4, 0x6C, OxAC, OxAD, 0x6D, OxAF, Ox6F,
0x6E, OxAE, OxAA, 0x6A, 0x6B, OxAB, 0x69, OxA9, OxA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, OxBB,
0x7B, 0x7A, O0xBA, OxBE, Ox7E, Ox7F, OxBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, OxB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, OxBl, 0x71, 0x70, 0xBO, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0xS5C,
0x5D, 0x9D, Ox5F, 0x9F, 0x9E, Ox5E, 0x5A, O0x9A, O0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, O0x8A, 0x4A, Ox4E, Ox8E, Ox8F, O0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,0x40)

Dim clock As Byte

'Opencom For MODBUS ==

Opencom 1,19200,3,500,200 ' Set Baud rate to 19,200 bps
On Recvl Gosub GETMODBUS ' Data Receive Interrupt routine

clock=0
On timer (10) Gosub CheckState 'Set Timer Interrupt every 100 ms

Do
Loop

267

GETMODBUS :

If Blen(1,0)

268

a=Blen(1,0)

> Datalength-1 Then

Debug Cr, "Response in hex:

For ct=0 To Datalength

Next

rmsg (ct)=Get (1,1) !

'If buffer equal to data length

' Store the buffer length in A!'

"

Debug Hex2 rmsg(ct)

'Calculate how many bytes in actual data.
'This example receives

'4 byte floating point data,

DLength=rmsg (2) /4

Store received 4 bytes into floating point array,

first then low byte.

ID=rmsg (0)

For ct=0 To DLength-1

——————— Option 1 - Store

Result (ct) .byte3=
Result (ct) .byte2=
Result (ct) .bytel=
Result (ct) .byte0l=

High Word then Low Word

rmsg (5+ (ct*4))

rmsg (6+ (ct*4))
rmsg (3+ (ct*4))
rmsg (4+ (ct*4))

so divided by 4.

Store received data in B

high byte

——————— Option 2 - Depending on your RTU slave device,
Result (ct) .byte3=

Result (ct) .byte2=
Result (ct) .bytel=
Result (ct) .bytel=

Debug Dec ct,":

rmsg (3+ (ct*4))

)
rmsg (4+ (ct*4))
rmsg (5+ (ct*4))
rmsg (6+ (ct*4))

",Float result(ct),

Debug hex8 result(ct),Cr

Next

'This part calculates CRC for received values

uchCRCHi =
uchCRCLo =

For dLen=0
ulndex =
uchCRCHi

OxXFF
OxXFF

To DataLength-2

uchCRCHi Xor rmsg(dLen)'

Cr

= uchCRCLo Xor auchCRCHi (uIndex)

/* calculate the CRC */

uchCRCLo = auchCRCLo (uIndex)
Next
CRC= (uchCRCHi <<8) Or uchCRCLo
CRC2= (rmsg (DataLength-1) *256) + rmsg(DataLength)

Debug "Response from RTU Device ID: ",Dec ID,Cr
Debug Cr, "Calculated CRC: ", hex4 CRC
Debug " Received CRC: ", hex4 CRC2,Cr

If CRC = CRC2 Then

For ct=0 To 15
Debug "Floating Point Value Reg "
Debug Dec ct,": ", Float Result(ct),Cr
Next
End If

End If

Return

'CheckState Area—-————————————————————— -
CheckState:

'100 is the period, so this would be 10ms * 100 = 1000 ms OR 1 sec
' This means the RTU devices will be checked every 1 sec

5 is the time between sending to the devices.

Since RS485 cannot send and receive simultaneosly in this app,
I can use this to control the time between sending commands.
Try to make it fast as possible but send AFTER receiving
response.

If (clock mod 100)=K*5 Then
Debug Cr, "sending to RTU Device ID: ",Dec DevicelDs (K),Cr
'Read 32 WORD registers or 16 Floating Point Values
WordRead DevicelDs (K), 362, 32

Incr K

If K>=N Then K=0

End If
Incr clock ' clock= clock+l
Return
End

Sub WordRead (SlaveAddr As Integer,StartAddr As Integer,
Length As Integer)

DataLength=4+ (Length*2)

269

msg (0) =SlaveAddr

'function code for word read (or for holding registers)

msg (1)=0x03

msg (2)=StartAddr /256
msg (3) =StartAddr mod 256
msg (4) =Length/256

msg (5) =Length mod 256

'This part calculates CRC - derived directly from the
'Modicon Modbus PDF

uchCRCHi1 = OxFF

uchCRCLo = OxFF

For dLen=0 To 5
uIndex = uchCRCHi Xor msg (dLen)

' /* calculate the CRC */

uchCRCHi uchCRCLo Xor auchCRCHi (uIndex)
uchCRCLo = auchCRCLo (uIndex)
Next

CRC= (uchCRCHi <<8) Or uchCRCLo
msg (6) =CRC /256
msg (7)=CRC mod 256

' Set REDE pin to TRANSMIT mode
' send 8 bytes of data!

Debug Cr, "start sending..."
Out REDE, 1
Puta 1,msg,8

'Option 1 — Wait until transmit finished and MUST put a small delay

Waittx 1
Udelay 100

'Option 2
' Udelay 300
' Set REDE pin to RECEIVE mode
out REDE, 0
Debug "done",Cr
End Sub

*Please check our Forum on the internet, www.cubloc.com on Modbus
ASCII and RTU updates as we upgrade our Basic source code often.

270

Chapter 10
CUTOUCH

Please be careful to not touch the inverter labeled
DANGER.

271

About

CUTOUCH is an integration of Touch panel, graphic LCD, and CUBLOC
embedded computer. In the recent years, there has been increase of use
of touch screens in the industrial field. But to use one, the user required
connecting to a PLC and learning to manipulate complex methods in order
to use it. In addition, cost of touch screen has been very expensive.

Our CUTOUCH is a new type of embedded controller that integrates Touch
screen, PLC, and graphic LCD into one.

The biggest difference between CUTOUCH and other touch screens is that
it's the only Visual Touch screen controller that can be programmed with
BASIC and LADDER in the world today.

BASIC language can be used to draw graphics and print characters to the
LCD and receive input from the touch screen before processing the x and y
positions. Sensor input through I/O, turning relays on/off, AD/DA
conversion, and RS232 communication are very easy to implement in
comparisons to traditional non-BASIC PLCs. With the LADDER LOGIC side
of CUBLOC, the user may do sequential processing and real-time logic
processing as in traditional PLCs.

CUTOUCH has a flash memory for BASIC and LADDER programs. A serial
port can be used to download and debug. After downloading is done, it can
run in a “Stand-alone” state.

If you are thinking about developing a device that uses a touch screen,
please review CUTOUCH and we guarantee you that it will let you spend

more time designing, and less time to develop.

Comfile Technology Inc.

272

About CUTOUCH

CUTOUCH is an integration of CUBLOC core module, graphic LCD, and a
touchpad. The graphic LCD portion is GHLCD. You can use the CUBLOC's
GHLCD native commands to draw, and print to the CUTOUCH.

]

TOUCH PAD GRAPHIC LCD MODULE CUBLOC

To implement a touch screen and PLC, it can add up to a big sum of money.
But with CUTOUCH you do not need two different devices, you just need all-
in-one device that will be less money in the long run.

CuTOUCH
TOUCH SCREEN + PLC

273

CUTOUCH

* DANGER!!!!!II Please be careful near the inverter, where a DANGER label
is located, large current flows through there!
Front
e N
\ J
Back

I/O0 PORT Connecter

A\

DC 9~30V RS232 Download I/O0 PORT
Channel 1 cable

274

CUTOUCH Dimensions

} 121.35 i
T M
e Lo, N 4 7y :
= © 7 [& 4l
4 :
@ v |yl
i
8 o |« 8 :
> g |s :
0
v | ©
& o | 7|
NS iy ’ e
A 4
I T et
I 160 I
8
182.2 57
180
57
l 24
10 |« | 4
' N 2 » 6 |« 8
............. s evees ORISR o WOPRRNUUION s RS)
C)

CUTOUCH Mounting Instruction

CUTOUCH comes with mounting brackets. Please install the mounting
brackets as shown below before installing CUTOUCH.

275

Menu System Library

CUTOUCH supports extra commands for easy-to-use menus. These
commands make for easy creation and manipulation of the menus. With
the menu system library, a menu system shown in the below picture can be
made in less than 5 minutes.

Comfile Automobile gas pressurizer

Selectgas Gas pressure Auto type

‘ Gas left ‘ Initialize Total cost

MENU Commands

CUTOUCH has memory space for about 100 MENU buttons. Use MENUSET
command to set the x and y axis positions and the style of the MENU.
Then MENUTITLE command can be used to name the MENU. When touch
input is received, MENUCHECK command can be used to decide which
MENU button was pressed.

0 99

»

Each MENU button can be reset to another x and y axis positions and style
by using MENUSET command. The only restriction is that up to 100 button
can be inputted at time in one screen. But the user is free to reset each
button to another usage after each screen, allowing infinite buttons.

276

Menuset

MENUSET index, style, x1, y1, x2, y2
Index : Menu Index Number
Style : Button Style; 0O=none, 1=Box, 2=Box with Shadow
X1,y1,x2,y2 : Menu Button location

Index value must be between 0~99. Style is the shape of the button
where 0 is no box, 1 is for a box, and 2 is for a showed box.

0 1 2

x1,y1, x2, y2 are the x and y axis positions of the left upper and lower right
corners. When this command is executed, the set part of the screen
becomes part of the button’s area.

Menutitle

MENUTITLE index, x, y, string
Index :Menu index number
X,y : Title location based on left upper corner of button
string : Name of the menu

Menuset only draws the box itself. Use Menutitle command to set the
name of the menu like shown here:

Menutitle 0,13,13,"Gas Left”
Menutitle 1,16,13,"Initialize”
Menutitle 2,13,13,"Total Cost”

Gas left Initialize Total cost

277

Menucheck()

Variable = MENUCHECK(index, touchx, touchy)
Variable : Variable to store results (1 if selected, 0 if unselected)
Index : Menu Index Number
Touchx : Touch pad x axis point
Touchy : Touch pad y axis point

Use this command Menucheck to see which menu is selected. Touchx and
Touchy are the user’s touchpad input points. If the Menu is selected, 1 is
returned, otherwise 0 is returned.

If Menucheck (0,TX1,TYl) = 1 Then
Menureverse 0
Beep 18,180

End If

Menureverse

MENUREVERSE index
Index : Menu index number

Selected menu box is inverted.

Initialize Total cost

Menu()

Variable = MENU(index, pos)
Variable : Variable to store results (1 = selected, 0 = unselected)
Index : Menu Index
pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

When you need to find the current status of Menu buttons set by Menuset
command, you can use Menu() function to return the current status.

0 will read x2, 1 will read y1, 2 will read x2, and3 will read y2. It's as
though the MENU is accessed as 2 dimensional array.

\

If Menu(0,1) < 100 THEN ‘' If Menu button 0" s Yl is less than 100

278

Waitdraw

WAITDRAW

This command will wait for a drawing command to finish before resuming
execution.

ELFILL 200,100,100,50 ' Fill an ellipse
WAITDRAW ' Wait until drawing is finished.

This command is especially useful for animations and when you have
trouble displaying graphics because of the speed.

CUTOUCH has an internal buffer for receiving graphic commands from
CUBLOC. If this buffer fills up and data is sent to it, the data could get
corrupted. In order to avoid these situations, you can use the WAITDRAW
command to wait until the buffer has enough space before sending graphic
commands.

If you need to draw graphics repeatedly, we recommend you use
WAITDRAW to avoid situations where the LCD might get blurry or received

noise.

This command can only be used with CUTOUCH.

279

Touch Pad Input Example
You can use SET PAD, ON PAD, and GETPAD commands to find out which
menus were pressed from the user.

All PAD commands are geared for receiving and processing touch input.

We can use ON PAD interrupts to receive touch inputs. The following is an
example program that uses the touch pad:

' DEMO FOR CUTOUCH

'

Const Device = CT1700

Dim TX1 As Word, TY1l As Word

Set pad 0,4,5 '€ (1) Activate Touch PAD Input
On Pad Gosub abc ‘€ (2) Declare pad interrupts
Do
Loop
abc:
TX1 = Getpad(2) ‘€ (3) Interrupt Service routine
TY1l = Getpad(2)
Circlefill TX1,TY1,10 ‘¢ (4) Draw a circle where it

was touched
Return

(1) SET PAD 0, 4, 5 : This command will activate the PAD inputs. (Syntax:
SET PAD mode, packet size, buffer size). CUTOUCH has a separate touch
controller that will sense touch input and send back to the CPU through SPI
protocol. This “touch controller” will create a signal that is equal to mode =
0. (MSB, RISING EDGE sampling) Input packets are 4 bytes each (X and Y
each get 2 bytes). Buffer size is 5, 1 more than the actual packet size.

(2) ON Pad Gosub ABC: This command is for PAD interrupt declaration.
When PAD input occurs, it will jump to label ABC.

(3) This is interrupt service routine. When PAD input occurs, this is part of
the code until return will be executed. Getpad will read the data received
from touch pad, 2 bytes for x position and 2 bytes for y position.

(4) Draw a circle where touch input was received.

When this program is executed, you will be able to see that wherever you
press on the screen, a circle will appear. Please use this program as a
skeleton for your touch programs.

The following is MENU command and ON PAD command example: When

280

button is pressed, a beep will sound from the piezo and the button will be

inversed.

abc:

' DEMO FOR CUTOUCH
'

Const Device = CT1700

Dim TX1 As Integer, TYl As Integer
Dim k As Long

Contrast 550

Set Pad 0,4,5

On Pad Gosub abc

Menuset 0,2,8,16,87,63
Menutitle 0,13,13,"Start"
Menuset 1,2,96,16,176,63
Menutitle 1,13,13,"End"
Menuset 2,2,184,16,264,63
Menutitle 2,13,13,"Restart"
Low 18

Do

Loop

TX1 Getpad (2)
TY1l = Getpad(2)
Circlefill TX1,TY1,10
If Menucheck(0,TX1,TY1l) = 1 Then
Menureverse 0
Pulsout 18,300
End If
If Menucheck(l,TX1,TY1l) = 1 Then
Menureverse 1
Pulsout 18,300
End If
If Menucheck(2,TX1,TY1l) = 1 Then
Menureverse 2
Pulsout 18,300
End If
Return

v

Send out beep to piezo

‘ st ” ns H Rostar

281

CUTOUCH 1/0 Ports

CT1720
32
32

82

Model Name
Input Only

Output Only
A/D Input

High Counter Input
Other I/0s

Total

CT1720

With 82 1I/0 ports, the CT1720 has connectors as shown below.

J2

GND 7 6 543210

GND 151413121110 9 8

%,
)
g

=]

112

13

4

J1

J2

SSA e @ SSA

ved @ ® 0pd

Lzde e £vd
8zd e @ vid
6cde @ Gvd
0Ed ® ® 9%d
lede @ Lyd

PPA ® ® SSA

odeesd
Zde e 6d
zdeeold
edeelld
vdeezld
Gdeecid
od e e vid
LdeeGld
vore e oo 2
ssnee D

9Gd e e Z/d
lGde e ¢/d
8Gde e y/d
65de @ G/d
09d e e 9/d
lode e //d

¥9d @ @ 08d
S9d e e 18d
99d e e 28d
L9d e e £8d
89d @ e ¥8d
69d @ @ G8d
0/d e e 98d
lide e /8d
OIN ” “ JIN
Ave JIN
Az o ®ssy <t
AVZ ® ® sSA =)

282

Connector Name 1/0 Port Block | Explanation
PO 1/0 ADCO
P1 1/0 ADC1
P2 1/0 ADC2
J12 P3 1/0 Block 0O ADC3
(33) P4 1/0 ADC4
P5 1/0 ADC5
P6 1/0 ADC6
P7 1/0 ADC7
P8 1/0 PWMO
P9 1/0 PWM1
P10 1/0 PWM2
J13 P11 1/0 Block 1 PWM3
(33) P12 /0 PWM4 / INTO
P13 1/0 PWM5 / INT1
P14 1/0 INT2
P15 1/0 INT3
J14 P16 1/0 HIGH COUNT INPUT O
P17 IN HIGH COUNT INPUT 1
P18 OUTPUT Internally connected to Piezo
BUZZER
(Cannot be accessed from Ladder)
P19~P2 N/C
3
P24~31 OUTPUT Block 3 8 Output Ports
J2 P32~39 OUTPUT Block 4 8 Output Ports
P40~47 OUTPUT Block 5 8 Output Ports
P48~55 OUTPUT Block 6 8 Output Ports
P56~63 INPUT Block 7 8 Input Ports
14 P64~71 INPUT Block 8 8 Input Ports
P72~79 INPUT Block 9 8 Input Ports
P80~87 INPUT Block 10 8 Input Ports

N/C (No Connection) means it’s not used..

CUTOUCH I/O ports are natively 5V friendly, to input 24V or use relay,
please use our CUTOUCH add-on board.

*If you input more than 5V into a CUTOUCH I/O port, it could cause the

product to mal-function so please be careful.

283

There are extra RS232 connectors as shown below so you have the
flexibility to be able to access CUTOUCH when in an enclosed area.

— — O

M coure rechnoioay

Cww JEJ Lﬁi l&l QX I TITCITTTN T o)

[

RS232 RS232 Download
Addtional Channel 1 cable
Connector

The Download RS232 Channel is a 4 pin type connector and RS232 Channel
1 is a 3 pin type connector as shown below. You can connect them to the

PC SIDE RS232 Pins as shown below:
GND
DTR)
™ Download / Monitoring
RD

GND
D RS232 Channel 1
PC SIDE RD

284

Relays
Relays that can be used in CUTOUCH are shown below. CUTOUCH has
same structure as the CB290.

Relay Range Units Feature
Input/Output Relay | PO~P127 1 bit Interface with
P external devices
Internal Relay M MO0~M1023 1 bit Internal status
Special Relay F FO~F127 1 bit System status
Timer Relay T TO~T255 16 bit (1 Word) Timers
Counter C C0~C255 16 bit (1 Word) Counters
Step-Enable S S0~S15 256 Steps(1 | Step-enable

Byte)
Data D D0~511 16 bit (1 Word) | Data Storage

P,M,F is in units of bits and T, C, and D are in units of Words. To access P,
M, and F in units of Words, please use WP, WM, and WF, respectively.

Relay Range Units Feature

WP WPO~7 16 bit (1 Word) P Access in units of Words
WM WMO~WM63 | 16 bit (1 Word) M Access in units of Words
WF WFO~WF7 16 bit (1 Word) F Access in units of Words

WPOQ is equal to PO through P15 put together. PO is placed in the LSB
(Least Significant Bit) and P15 is placed in the MSB (Most Significant Bit).
Commands like WMOV can be used to easily manipulate these relay areas.

WPO

P15

WP1

Pat

Pa7

WP2

WP3

P63

285

Backup Battery

CUTOUCH will maintain data in its data memory after power OFF by using
its backup battery. If backup is not needed, the program must clear the
memory at the beginning of the program. In BASIC, RAMCLEAR command
can be used to clear all data memory at the start of the program.

*The CUTOUCH comes with a self-charging super-capacitor which can last
couple hours to couple days depending on your application. For adding
backup battery, please connect to the pins labeled, “External Battery”,
under the super-capacitor. The CuTOUCH’s 1.0uF super-capacitor lasts
about 30 hours during power-outage. You can replace it with a 10uF
super-capacitor to extend the duration to about 300 hours(12.5 days).

' DEMO FOR CUTOUCH

'

Const Device = CT1700

Dim TX1 As Word, TY1l As Word

X1 = 0
Yl = 0 ' Clear just this variable
RAMCLEAR ' Clear all RAM

For LADDER, all relays S, M, C, T, and D are backed up by the backup
battery. Relay P is cleared at power ON by default. If you only want to
clear parts of the relay, not all relays, you can use the following method to
clear:

Const Device = CT1700

Dim I As Integer

For I=0 to 32 ' Clear only relay MO to M32
_M(I) =0

Next

Set Ladder On

Most traditional PLCs have KEEP memory for storing and restoring data in
case of power down. CUTOUCH also has this feature by using a super
capacitor, which recharges itself and acts as a backup battery. You also
have the option of using larger capacity capacitor or an actual battery.

286

KEEP Timer and KEEP Counter

KEEP timer will retain its data values when powered off and restart from the
data values when power is turned on. KCTU and KCTD commands can be
used in place of CTU and CTD commands in order to make use of this KEEP
timer and KEEP counter. Please refer to KCTU, KCTD commands for

detailed information.

287

CUTOUCH Sample Program

SAMPLE 1

Let's make a simple counter that will print to the screen. The source files
used here are in your CUBLOC Studio installation directory. (Usually
C:\Program Files\Comfile Tools\CublocStudio)

3241

<Filename : CT001.CUL>
Const Device = Ctl700
Dim I As Integer
Contrast 550 ' LCD CONTRAST SETTING

Do
Locate 15,6
Print DEC5 I
Incr I
Delay 200
Loop

Please adjust your screen’s contrast accordingly using CONTRAST command.
* Depending on the model, you may be able to adjust the contrast using a
adjustable knob on the back of CUTOUCH. In this case, you have the
option to set the contrast manually.

288

SAMPLE 2
The following example program will display RESET button and will increment
number shown every time the button is pressed.

3241

RESET I

<Filename : CT002.CUL>
Const Device = Ct1700
Dim I As Integer
Dim TX1 As Integer, TYl As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Menuset 0,2,120,155,195,200
Menutitle 0,20,14, "RESET"

Do
Locate 15,6
Print DEC5 I
Incr I
Delay 200

Loop

GETTOUCH :
TX1 = Getpad(2)

TY1l = Getpad(2)

If Menucheck(0,TX1,TYl) = 1 Then
Pulsout 18,300
I=0

End If

Return

SET PAD command activates touch input. ON PAD command is used to
jump to a label when touch input is received. MENUSET command is used
to set the desired touch input area and MENUTITLE command is used to set
the name of the button itself. PULSEOUT outputs BEEP sound to the piezo.

289

SAMPLE 3

Draw a circle where your finger touches.

<Filename : CT003.CUL>
Const Device = Ctl700
Dim TX1 As Integer, TYl As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Do
Loop

GETTOUCH :
TX1 Getpad (2)
TYl = Getpad(2)
Circlefill TX1,TY1,10
Pulsout 18,300
Return

290

SAMPLE 4

Make a virtual keypad and accept numerical values.

<Filename : CT004.CUL>

Const Device = Ct1700
Dim TX1 As Integer, TYl As Integer
Dim I As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Menuset 0,2,165,50,195,75
Menutitle 0,11,4,"1"
Menuset 1,2,205,50,235,75
Menutitle 1,11,4,"2"
Menuset 2,2,245,50,275,75
Menutitle 2,11,4,"3"
Menuset 3,2,165,85,195,110
Menutitle 3,11,4,"4"
Menuset 4,2,205,85,235,110
Menutitle 4,11,4,"5"
Menuset 5,2,245,85,275,110
Menutitle 5,11,4,"6"
Menuset 6,2,165,120,195,145
Menutitle 6,11,4,"7"
Menuset 7,2,205,120,235,145
Menutitle 7,11,4,"8"
Menuset 8,2,245,120,275,145
Menutitle 8,11,4,"9"
Menuset 9,2,165,155,195,180
Menutitle 9,11,4,"0"
Menuset 10,2,205,155,275,180
Menutitle 10,17,4, "ENTER"
I =0
Do
Loop

GETTOUCH :

291

TX1 = Getpad(2)

TY1 Getpad (2)

If Menucheck (0,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+1
Pulsout 18,300

Elseif Menucheck(l,TX1,TY1l) = 1 Then
I =1I<<4
I=1+2
Pulsout 18,300

Elseif Menucheck(2,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+3
Pulsout 18,300

Elseif Menucheck(3,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+4
Pulsout 18,300

Elseif Menucheck (4,TX1,TY1l) = 1 Then
I =1I<<4
I=I+5
Pulsout 18,300

Elseif Menucheck (5,TX1,TY1) = 1 Then
I =1I<<4
I=1I+6
Pulsout 18,300

Elseif Menucheck(6,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+7
Pulsout 18,300

Elseif Menucheck(7,TX1,TY1) = 1 Then
I =1I<<4
I=1I+38
Pulsout 18,300

Elseif Menucheck(8,TX1,TY1l) = 1 Then
I =1I<<4
I=I+29
Pulsout 18,300

Elseif Menucheck(9,TX1,TY1) = 1 Then
I =1I<<4
Pulsout 18,300

Elseif Menucheck(10,TX1,TYl) = 1 Then
I=0
Pulsout 18,300

End If

Locate 3,3

Print HEX4 I

Return

The final value I is stored as BCD code, you can use BCD2BIN command to
convert back to a binary number.

292

SAMPLE 5

Let's try using CuCANVAS to make some menus. To create the virtual
keypad shown in the previous page, it would take a longer time to just code
it. We can save ourselves time by using CuCANVAS.

Please run CuCANVAS and press Add Form button on the upper right hand
corner. Enter a desired name for your new form. (Here we used NUMKEY)

T HIZSIE - CuCANVAS EEX
File Edit Generate Tools View Help

D= § e e

Numkey A Form

Use tab key to select neighbor ones

1 Numkey

H O, ® CHRIDO

nezsw| x|~ e[o[s [x|

On the left side of CuUCANVAS, you will see a tool bar with an arrow, box,
filled box, circle, filled circle, line, text, and menu box. Please select the
last button, menu box, and draw a small box on the screen.

The 0 on the button means the menu number is 0. In the actual screen,

this number will not be displayed. Type “1” in the Title field on the top.
You have successfully made a “1” button.

293

Yi Numkey.cys - CuCANVAS

File Edit Generate Tools View Help
DS G a R |

Numkey Add Form

Use tab key to select neighbor ones.
1 Humkey

EO> & OH O™

weasn [[[v [s [x|

You can make the rest of the buttons and the keypad like the one shown
below can be made in less than 5 minutes.

T Numkey.cys - CUCANVAS

File Edit Generate Tools \View Help
DS H G ER S

Numkey Add Farm

Use tab key o select neighbor ones L

1 Humkey

BOP. 60080

2

vessw fiesgr x| - v -] s [x[

294

Now is the fun part. Simply click on Generate on the menu bar and click
“View Basic Code”. CuCANVAS will generate a sub function that includes
the button that you have just created. Simply copy(Ctrl+C) and
paste(CTRL+V) to CUBLOC Studio and wala! You have a menu in couple
minutes. For copying, you can either press Ctrl+C or press on the “To
Clipboard” button at the bottom.

FReal-Time Code Generation #

BASIC Code for CUBLOC

SLB NUMKE ()
FOMT 0,0
STYLE 0,00
WEMUSET 0,2,180 55,215 90
WEMUITITLE 0,34,
WENLISET 1,2 225 £5 250 40
WEMUITITLE 1,3,4,"2"
WENLISET 2,2 260 £5 285 A0
WEMUITITLE 2,3,4,"3"
WENUSET 3,2,180,100,215,125
WEMUTITLE 3,3,4,"4"
WMENUSET 4,2,225,100,250,125
WEMUITITLE 4,3,4,'5"
WEMUSET 5,2 260,100,285,125
WENLITITLE 59,4 "6
WEMUSET 6,2,180,135,21 5,160
WENLITITLE B,3,4,"7"
WEMUSET 7,2, 225 135,250,160
WMENUITITLE 7,3,4,"5"
WEMUSET 8,2,260,135,285,160
WENUITITLE 8,3,4,"3"
WEMUSET 9,2,190,170,215,195
WEMUITITLE 9,9,4,"0"
WEMLISET 1012 225 1701 265 195
WEMUITITLE 10,12 4 "EMTER"
FONT 40

D S

To Clipboardl Save to File...l Close I

You can also use include files instead of copying and pasting for repetitive
menu creations.

295

Click “Save to File” button and save as an include (*.inc) file.

Save Your Design To BASIC Code, I |
AR |5 APPNOTE x| == er EE
[CTO05, INC
mosw: |
O AT [CUBLOC BASIC Codel(=inc) =l 2
Y

Using the include file, you will be able to save lots of time and be able to
make changes to your menus without making it a big copy and paste hassle.

The following program is exactly same as SAMPLE4 except we use include
file for the virtual keypad.

<Filename : CT005.CUL>
Const Device = Ctl700
Dim TX1 As Integer, TYl As Integer
Dim I As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
NUMKEY ' Execute the Sub-routine in INCLUDE file
I =0
Do
Loop

GETTOUCH:

TX1 = Getpad(2)

TY1 = Getpad(2)

If Menucheck (0,TX1,TYl) = 1 Then
I=1I<<{4
I=1I+1
Pulsout 18,300

Elseif Menucheck(l,TX1,TY1l) = 1 Then
I=1I<<{4
I=1I+2
Pulsout 18,300

Elseif Menucheck(2,TX1,TY1l) = 1 Then
I=1I<<{4
I=1I+3
Pulsout 18,300

Elseif Menucheck(3,TX1,TY1l) = 1 Then
I=1I<<{4

296

I=1+14
Pulsout 18,300

Elseif Menucheck (4,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+5
Pulsout 18,300

Elseif Menucheck (5,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+6
Pulsout 18,300

Elseif Menucheck (6,TX1,TY1l) = 1 Then
I =1I<<4
I=1+7
Pulsout 18,300

Elseif Menucheck(7,TX1,TY1l) = 1 Then
I =1I<<4
I=1+38
Pulsout 18,300

Elseif Menucheck (8,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+29
Pulsout 18,300

Elseif Menucheck(9,TX1,TY1l) = 1 Then
I =1I<<4
Pulsout 18,300

Elseif Menucheck (10,TX1,TY1l) = 1 Then
I=0
Pulsout 18,300

End If

Locate 3,3

Print HEX4 I

Return
End

#INCLUDE "CTOO5.INC"

We must include #include command at the end of the code.
different from other languages such as C++, but it works.

Slightly

CUCANVS can downloat at www.comfiletech.com. CUCANVAS is free-ware.

297

MEMO

298

Chapter 11
Application
Notes

NOTE 1. Switch Input

Let’s say for example you are developing some kind of a machine, the first
thing you need is a user interface. Our task today is to build a machine
that will receive input from a switch and processes it to its assigned task..

We will make a START and STOP button that will light a lamp ON and OFF.

=

O sout VIN
O siN Vss
O ATN RES O
— O vss VDD
START KEY L PO P15 B an
O p1 P14
O r2 P13 3300hm
™ [m K] P12 '
STOP KEY P4 P11
Orps P10 A
10Kohm. O pre PO
O p7)

P8

CB220

As you can see above, PO and P4 ports will be connected to a pull-down
resistor (resistor attached to ground). CB220 will read these switches as
LOW or OFF when the switch is not pressed. To find out if these switches
are pressed or unpressed, we can use CUBLOC BASIC command IN().

<Filename: startstopkey.cul>
Const Device = cb220

Dim a As Byte

Do
If In(0) = 1 Then a = 1
If In(4) = 1 Then a = 0
Out 14,a

Loop

When the switch is pressed, a “bouncing” effect occurs from the switch’s
mechanical spring.

300

The above picture shows how bouncing can confuse CUBLOC controller by
bouncing up and down. To get rid of this bouncing effect, a capacitor and
resistor can be added to filter it out.

A simpler method is to use the command KEYINH() rather than IN() which
will remove the bouncing effect by software.

<Filename: keyinhinput.cul>

Const Device = cb220

Dim a As Byte

Do
If Keyinh(0,20) = 1 Then a =
If Keyinh(4,20) = 1 Then a
Out 14,a

I
.

Loop

The 2™ parameter of KEYINH(0O, 20) sets the time for removing the
bouncing effect, also called debouncing time. In other words, the 20
means to wait 20ms before accepting input.

For the industrial field, there can be a lot of noisy environments where it can
affect the switch signals. In order to block noise, the user can implement a
circuit diagram similar to one shown below. By using a photocoupler, the
user is able to raise the voltage and minimize the noise from affecting the
switch.

DC24V DC5V

2.2Kohm.
—
o—\N\—]

N
}\‘{ CUBLOC I/0

0
PC-18T1 10Kohm.

<END>

301

NOTE 2. Keypad Input

Application note 2 will cover a 4 by 4 Keypad by taking its input and
outputting the results to a 4 digit 7 segment module (CSG module)

CB280
[o | P8 05715 e5 341
Iy P9 PO
12052720 218
P1
169157
P2 2 6 10° 14
3” 79’ ﬂy 4 15

P3

P4

P5

P6

P7

The CSG module is a 4 digit seven segment LED module that can be
connected via CUNET or I2C protocol to display numbers and custom
characters.

[I'l [

. . 1. .

<Filename: csgprint.cul>

Const Device = CB280
Set I2c 9,8
Dim I As Byte
Do

Csgdec 0, I

I=1I+1
Loop

302

If you connect CUNET to CSG and execute the above program, the CSG
module will show numbers that will count up.

The key matrix can be read easily through the command KEYPAD. If you
look carefully at the keypad, you will see that scancode does not match the
actual key pressed. In order to read the correct key, we will use a
KEYTABLE before outputting the value to the CSG.

<Filename: keypadnum.cul>
Const Device = CB280
Set I2c 9,8
Dim I As Integer
Dim K As Integer

Const Byte KEYTABLE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)

Do
I=Keypad (0)
If I < 16 Then
I = KEYTABLE (I)
Csgdec 0, I
End If
Loop

And now, we will make a simple program that receives input. When a
number key input is received, it is displayed to the CSG module as a 4 digit
number. The number is stored into the variable K, which is in BCD code.
We then use the function BCD2BIN to convert the BCD value back into
binary.
<Filename: num4in.cul>
Const Device = CB280
Set I2c 9,8
Dim I As Integer
Dim K As Integer
Dim M As Integer
K=0
Const Byte KEYTABIE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)
Do
I=Keypad (0)
If I < 16 Then
I = KEYTABLE (I)
If I < 10 Then
K=K<< 4
K=K+ I
Csghex 0,K
End If

v

! WAIT UNTIL KEY DEPRESS

303

Do While Keypad(0) < 255
Loop
M = Bcd2bin (K)
Debug Dec M,CR
End If
Loop

When there is no input, the returned scancode is 255. By using Do While
keypad(0) < 255, we will wait until a key is unpressed which will return a
scancode of 255. This is to let the processor stop reading input while a key
is pressed. Otherwise, the processor might receive multiple key inputs
since execution time of CUBLOC is very fast.

By using _D(0) = M, you can pass the scancode value to relay DO of
LADDER LOGIC. If you need to use a keypad in LADDER, you can modify
this code a little bit to get your results quick.

<END>

304

NOTE 3. Temperature Sensor

In our world today, there are countless number of devices that senses
temperature. Refrigerator, heater, air conditioner, automobiles, and many
other devices that uses temperature sensors. Therefore, this is one of the
very basic components we must know.

What types of temperature sensors are there? There is PT100, NTC, PTC
thermistor, and other chip-type sensors such as the DS1620.

Today, we will dive into the NTC thermistor and figure out how to connect
and use it with CUBLOC.

The NTC thermistor can be comparable to a very sensitive resistor.
Depending on the temperature, the value of resistance will change. By
reading the value of this resistance, we can figure out the current
temperature. Among NTC thermistors, the ceramic types can sense around
-20 to 130 degrees Celcius temperature.

There is an NTC thermistor that resembles a diode. With this thermistor,
we can sense between -30 and 250 degrees Celcius temperature.

g

You can acquire R-T(Resistance — Temperature) conversion table from the
maker of the thermistor. The following is a diode-type 10K Ohm NTC
Thermistor R-T conversion chart and table.

Temperature Minimum Average Maximum
0 31260.0 32610.0 33987.7
1 29725.7 30993.7 32286.7
2 28275.6 29466.8 30680.6
3 26904.5 28023.9 29163.6
4 25607.8 26660.0 27730.3
5 24381.0 25370.2 26375.7
6 23220.0 24150.1 25094.9
7 22120.9 22995.7 23883.7
8 21080.1 21903.1 22737.7
9 20094.1 20868.5 21653.3
10 19159.9 19888.7 20626.7
11 18274.4 18960.5 19654.6
12 17434.8 18080.8 18733.8
13 16638.5 17246.9 17861.4
14 15883.1 16456.1 17034.4
15 15166.2 15706.0 16250.4

305

16 14485.7 14994.4 15506.9
17 13839.6 14318.9 14801.5
18 13225.9 13677.7 14132.2
19 12642.8 13068.7 13496.9
20 12088.7 12490.3 12893.6
21 11561.9 11940.6 12320.7
22 11061.0 11418.2 11776.4
23 10584.6 10921.6 11259.2
24 10131.3 10449.3 10767.5
25 9700.0 10000.0 10300.0
26 9281.3 9572.5 9864.0

For connecting the sensor to the CUBLOC, please refer to the following
circuit diagram. To protect against voltage surges, the Zener diode must

be used.

1Kohm.
1%

NTC TH.

5.1V
ZENER

DIODE 0.47uF

CUBLOC
A/D CHANNEL O

As you can see in the circuit diagram, we will be using A/D (Analog-to-
Digital) converter to read the current voltage flowing through the sensor.
The A/D converter will convert the current voltage into a value between 0

and 1024.

The most important part of this application note is the following table which
converts the value of voltage to A/D value between 0 and 1024. (Only
some of the temperatures are shown.)

Temp

Resistance [Voltage

[A/D value

-30

175996.6 |4.971750865

1018

-29

165473.9 |4.969965259

1018

-28

155643.6 |4.968080404

1017

-27

146456.3 14.966091647

1017

-26

137866.4 |4.963994167

1017

-25

129831.7 4.961782976

1016

24

122313.4 |4.959452909

1016

115275.4 14.956998627

1015

108684.3 4.954414614

1015

102509.3 14.951695171

1014

52288.3 4.90617073

1005

49549.7 4.901087406

1004

306

-7 46970.5 4.895769279 1003
-6 44540.6 4.890207868 1002
-5 42250.5 4.884394522 1000
-4 40091.5 4.878320427 999
-3 38055.4 4.871976604 998
-2 36134.4 4.865353924 996
-1 34321.5 4.858443112 995
0 32610.0 4.851234752 994
1 30993.7 4.8437193 992
2 29466.8 4.835887094 990
3 28023.9 4.827728362 989
4 26660.0 4.819233234 987
5 25370.2 4.810391755 985
6 24150.1 4.801193902 983
7 22995.7 4.79162959 981
8 21903.1 4.781688696 979
9 20868.5 4.771361072 977
10 19888.7 4.760636561 975
11 18960.5 4.749505017 973
12 18080.8 4.737956327 970
13 17246.9 4.725980424 968
14 16456.1 4.713567319 965
15 15706.0 4.700707114 963
16 14994.4 4.68739003 960
17 14318.9 4.673606431 957
18 13677.7 4.659346849 954
19 13068.7 4.644602011 951
20 12490.3 4.629362861 948
21 11940.6 4.613620595 945
22 11418.2 4.597366683 942
23 10921.6 4.580592903 938
24 10449.3 4.563291365 935
25 10000.0 4.545454545 931
26 9572.5 4.527075313 927
27 9165.6 4.508146964 923
28 8778.3 4.488663246 919
29 8409.4 4.468618396 915
30 8058.1 4.448007162 911
31 7723.3 4.426824842 907
32 7404.3 4.405067304 902
33 7100.2 4.382731022 898
34 6810.2 4.359813102 893
35 6533.7 4.336311306 888
36 6269.8 4.312224084 883
37 6018.0 4.287550592 878
38 5777.7 4.262290722 873
39 5548.3 4.236445118 868
50 3606.1 3.914475937 802
51 3472.1 3.881948015 795
52 3343.7 3.848917708 788
53 3220.8 3.815397329 781
54 3103.1 3.781399998 774
55 2990.2 3.746939622 767

307

308

56 2882.1 3.712030877 760
57 2778.4 3.676689176 753
58 2679.0 3.640930651 746
59 2583.6 3.604772114 738
81 1220.4 2.748157207 563
82 1181.9 2.7084025 555
83 1144.8 2.668747011 547
84 1109.0 2.629210536 538
85 1074.5 2.589812422 530
86 1041.3 2.550571543 522
87 1009.2 2.511506263 514
88 978.3 2.472634416 506
89 948.5 2.433973277 498
90 919.8 2.395539544 491
91 892.0 2.357349316 483
92 865.3 2.319418079 475
93 839.4 2.281760687 467
94 814.5 2.244391354 460
95 790.4 2.207323646 452
96 767.1 2.170570465 445
97 744.7 2.134144055 437
98 723.0 2.098055989 430
99 702.0 2.062317177 422
100 681.8 2.026937858 415
101 662.2 1.99192761 408
102 643.3 1.957295352 401
103 625.0 1.92304935 394
104 607.3 1.889197225 387
105 590.2 1.855745964 380
106 573.7 1.822701928 373
107 557.7 1.790070865 367
108 542.2 1.757857926 360
109 527.2 1.726067674 353
239 33.5 0.162295782 33
240 33.0 0.159800146 33
241 32.5 0.157350769 32
242 32.0 0.154946682 32
243 31.5 0.152586936 31
244 31.0 0.150270604 31
245 30.5 0.147996779 30
246 30.0 0.145764577 30
247 29.6 0.143573131 29
248 29.1 0.141421596 29
249 28.7 0.139309144 29
250 28.2 0.137234968 28

! NTC THERMISTOR READ TABLE
! 10K DIODE TYPE

Const Device = cb280

Const Integer TH TABLE = (992,990,989,987,985,983,981,979,977, 975,
973,970, 968, 965, 963, 960, 957, 954, 951, 948,
945,942,938, 935,931, 927, 923,919,915, 911,
907,902,898,893,888,883,878,873, 868,862,
857,851,845,839, 833,827, 821,815,808, 802,
795,788,781,774,767,760,753,746,738,731,
723,716,708,700, 692, 684,677,669, 661,652,
644,636, 628,620, 612,604,596,587,579,571,
563,555,547,538,530,522,514,506,498,491,
483,475,467,460,452,445,437,430,422,415)

Dim a As Integer,b As Integer
Do
b = Tadin (0)
If b > 990 Or b < 400 Then
Debug "Out of Range" 'Check short or open th.
End If
For a=0 To 100
If b > TH_TABLE (a) Then Exit For
Next
Debug Dec a,cr
Delay 500
Loop

<Filename: ntcth.cul>

By using the TADIN command for AD conversion, CUBLOC will automatically
calculate the average of 10 A/D conversion reads. By using this command,
you get more precise results. The sample program shown here will be able
to sense between 0 to 100 degrees. For larger range, you can simply
modify the code.

The formula for acquiring A/D conversion value from the R-T table is as
follows:

——————— xTHR
(1000 + THR)

THR is the resistance value. 1000 is for 1K Ohm resistor and 5 is for 5
volts. The 10 bit A/D converter of CUBLOC will return a value between 0
and 1024. There for to get the A/D value, you must multiply result V by
204.8. You can easily make a chart by using an excel spreadsheet to enter
these formulas. <END>

309

NOTE 4.
Connect to the Internet through
XPORT

In this application note, we will explain how to connect to the internet using
XPORT internet module. By using an XPORT, you can download and
monitor your programs through the internet.

For applications that need customer service and updates, you can use
XPORT.

By using XPORT, you will be able to check the status of your machine from
California to New York and download new programs to your CUBLOC
module by using our Java applications. We provide open-source Java
applications in which you can simply edit to customize to your project.

No special coding is necessary for the basic monitoring and downloading.
Simply connect the XPORT to CUBLOC.

You can use XPORT Dongle, which has MAX232 chip to convert RS232
signal from 3.3V to 12V. This XPORT Dongle is customized to be used with
CUBLOC Study Board, CUTOUCH, proto-boards, and baseboards by
connecting 5V to pin 9 of RS232 connectors. To use dongle elsewhere, you
will have to input 5V to pin 9 of the RS232 connector being used.

Please check out www.cubloc.com forum for XPORT applications, downloads
and detailed information.

To use XPORT, you will need to get XPORT Devicelnstaller to set the XPORT
for the first time.

310

Bk Lantronix Devicelnstaller 3.6.0.6

File Edit View Device Tools Help

o e

Search Assign IP

Type Narie Graup 1P Address Hardvare Addrsss | Status
EPart-03 192,168,126 00-20-44-86-32-08 Onine
i

When Search button is pressed, XPORTs connected to your network will
show up. Please record the IP address.

Baud Rate:

Data bits:

Parity:

Stop bits:

Flaw cantral: |N0ne 3 |

[Ok] [Cancel]

Z |

After selecting the XPORT to configure, please click on Port ->Setup and
setup the parameters as shown above.

After setting up the XPORT, you can install a Java applet to the XPORT to
enable monitoring and downloading through the internet.

Please go to Run and type cmd to go to DOS command line as shown
below:

LZz08 E0. M. E= 2 20

E5 UEHIKdA 2,

.

ng
~
S

nd v

J
ro
4
k-

ESEETET

311

Please type as shown below, “make IP address”.

TWWINDOWSWSystem32Wemd.exe

<C> Copyright 1985-2001 Microsoft Cowp.

C:¥Docunents and SettingsWauedcdimax

091 -83-29

C:tmax>eftp —i 192.168.1.26 PUT c.cob WEBL
1: 88568 bytes in 12 seconds, 7388 bytes/s

Transfer succes

C: tmax >,

<DIR>
<DIR>

88,568 c_cob

27 make.hat
16,896 tftp.exe

105,483 H}
18.194.374.656 Hf

The IP address here is the IP address you have recorded earlier with the

Devicelnstaller.

Please make sure you have java software installed on your computer by
going to www.java.com.

And now for the final part, simply type the IP address on the Internet

Explorer.

Please click “Yes” on the certificate window.

OB Filename

Cornerind to P 402 168.1.26 Port : 10001

[urrentFile

Wanitoring
W PD-P15 al
T RIGPI a0
o0
PI2-PaT oo
on
™ P4B-PEI a0
a0
I~ PELETY at
oo

Port# | 10001

312

P

ol
wh

e m|efefr]o]

ol w2 3 4 w§
ORI SR e F R
17 98 19 im0
28 C26 CX O3 |
30 O O3 W
41 42 a3 e a5
A9 a0 (51 52 05
57 (58 59 C6m)61
64 66 (&7 (6@) ge
73 T4 e

CuMAX232 - CUBLOC XPort Linker v.0.0.14

@I Serd RESET

You can click on “Start Monitor” to see the monitoring screen. P, M, F, and
other relay status can be seen in real-time.

Select “Open File”, select an CUBLOC object file, and press “Download’.

And now, you have the ability to upgrade your CUBLOC module without
actually being there.

For more detailed information and updates, please check out CUBLOC forum
at
http://cubloc.com

Please refer to Max’s XPORT Applications our forum.

<END>

313

NOTE 5. Sound Bytes

In this application note, I will be showing you simple ways to create key
touch sound, musical notes, and alert sound. An I/O port or a PWM
Channel of CUBLOC can be used for sound. With a PWM Channel, you have
the advantage of creating different tones of sounds.

souT VIN
SIN vss
ATN RES
vss VDD
PO P15
P14

P2 P13
Speaker 0.047uF

P3 P12
P4 P11
P5 P10
P6 P9
P7 P8
CB220

The above example shows PWM Channel 0 of CB220 being used with
Fregout command to produce a sound.

nn noononQonn
o

ooooo0ooOo0 U;U

Const Device = cb280

Dim PLAYSTR As String

Low 5

Fregout 0,5236 ‘Create a sound with frequency of 440Hz
Delay 500 ‘Delay

Pwmoff 0 ‘Stop Sound by turning off PWM

With commands like Freqout and Delay, simple sounds can be created.

<Filename: playcdec.cul>
Const Device = CB280
Low 5
Freqout 0,4403
Delay 200
Fregout 0,3703
Delay 200
Freqout 0,3114
Delay 200
Freqout 0,2202
Delay 200
Pwmoff 0

314

By changing frequencies, we have made a simple program that can play
musical notes.

Octave 4 Octave 5

A B C D E F G A B C D E F G

A B C D E F G H I J K L M N

To express one note, you can use 2 characters. The first character is for
the note and second character is for the length of the note.
<Filename: play.cul>

Const Device = cb280

Dim PLAYSTR As String
Low 5

PLAYSTR = "G5E3E3G3E3C5"
PLAY 0,PLAYSTR

Do
Loop
End

Sub PLAY (CH As Byte,NOTE As String)
Dim PL As Byte
Dim CHAR As Byte
Const Integer PLAYTABLE = (5236,4665,4403,3923,3495,3299,2939,
2618,2333,2202,1961,1747,1649,1469,0)
For PL=1 To Len (NOTE) Step 2

CHAR = Asc(Mid (NOTE,PL,1)) - &H41
Freqout CH,PLAYTABLE (CHAR)
CHAR = Asc (Mid (NOTE,PL+1,1)) - &H30
Delay CHAR*100
Next
Pwmoff CH
End Sub

When using PWM port for other purposes, Freqout command no longer
becomes available for use. In this case, we can use any regular I/O port to
create sound.

We will use TOGGLE and UDELAY commands to set the I/O pin to HIGH and
LOW.

The following example shows how to make an alert sound with a regular I/0
port, P4.

315

<Filename: playport.cul>

<END>

316

NOTE 6.
Step Motor Pulse Generation

To enable a step motor, we will create a simple program that outputs pulses
to the motor driver.

MOTOR DRIVER

CuBLOC

Like the picture shown above, a motor driver will be placed in between
CUBLOC and the motor. When the motor driver receives pulses from
CUBLOC, it will turn the MOTOR by 1.8 degrees for every pulse. This is not
the case with all motor drivers, but you can apply this type of motor pulse
generation to other applications.

<Filename: stepout.cul>
Const Device = CB280
Low 4
Do
STEPOUT 4,2,1000
Loop
End

Sub STEPOUT (PN As Byte,FR As Integer,LN As Long)
Dim SJ As Long
For SJ = 0 To LN
Reverse PN

Udelay FR

Reverse PN

Udelay FR
Next
End Sub

Here we will explain how to use the STEPOUT sub function. STEPOUT has 3
parameters PN, FR, and LN.

317

The PN is for the port number used. Please make sure to use an output
port. The second parameter FR is the length of the pulse. The last
parameter LN is for the number of pulses to send.

PN PORT Number
FR Pulse Length (0~65535)
LN Number of Pulses (0~2147483647)

STEPOUT 2, 50, 9 ' Generate 9 pulses with length of 50

B

STEPOUT 2, 20, 30 ' Generate 30 pulses with length of 20

The pulse length is only a numerical value. The below table show its
conversion to Frequency in Hz.

Pulse Length Frequency (Hz)
1 2475

2 2381

10 1786

50 800

100 472

1000 57

With this method, you can generate up to about 2475 pulses per second.
For bigger frequencies you will need to either use the PWM or Freqout
command. But you cannot control number of pulses with PWM or Freqout.

Low 5

Fregout 0,2 ‘Output pulses with frequency of 768 KHz
Delay 500 ‘delay about 500ms

Pwmoff 0 ‘Stop pulses

<End>

318

NOTE 7. RC Servo Motor

RC Servo Motors are used by many hobbyist to make remote control cars,
planes, and etc... In the recent years, it has been used for robot arms, legs,
and other body parts.

With CUBLOC, you can use the PWM to easily implement an RC Servo motor
into your project.

There are 3 wires to the RC servo motor. The black wire is ground and red
wire is for power. The other yellow wire is for inputting PWM signal. For
PWM signal, you can input about 60 pulses per second to enable the RC
servo.

O sout VIN O
O siN vss
O ATn RES O
O vss VDD
O ro P15
Red: 5V g p1 P14
O p2 P13 0
Oes P12
O p4 P11
P5 [n]
O rs Po
Ore7 P8 [
Black:GND €B220

The RC Servo motor will move to a location set by pulse and duty value and
will hold its position. By being able to control the exact angles at which the
RC servo stops, we can control the RC servo as freely as we want.

El

S 1.5mS 2ms

o
=B
aj

-45 0° +45°

319

A pulse of 1ms will stop the RC servo at -45 Degrees.

A pulse of 1.5ms will stop the RC servo at 0 Degrees.

A pulse of 2ms will stop the RC servo at +45 Degrees.
Depending on the RC servo you use, these specification will vary.

<Filename: rcservo.cul>

Const Device = CB280
Low 5
Pwm 0,2500,32768

When the code above is executed, a 1ms pulse will be outputted from port
number 5. RC servo will position itself to -45 degrees.

Const Device = CB280
Low 5
Pwm 0,4000,32768

When the code above is executed, a 1.5ms pulse will be outputted from
port number 5. RC servo will position itself to +45 degrees.

As you can see, by simply change the duty value of PWM command, RC
servo can easily be controlled. For the CB220, 3 RC servos can be
controlled simultaneously while the CB280 and CB290 can control 6 RC

Servos.

Warning: When the RC servo is in operation, it will nheed about 500mA of
current, please make sure to use a power supply of at least 500mA.

<END>

320

NOTE 8.
DS1620 Digital Thermometer

The DS1620 is

a digital thermometer. The chip internally

has a

temperature conversion table so the user does not have to make a separate
Temperature range between -55 and 125 degrees
Celcius can be obtained by the DS1620 in units of 0.5 Degrees.

conversion table.

Const
Const
Const
Const
Dim I
Delay

souT VIN
SIN vss
ATN RES
vss VDD
PO P15
P1 P14
P2 P13
P3 P12
P4 P11
P5 P10
P6 P9
P7 P8

CB220

nonnonnoonn

_I_I_H.[uuuuuuuu]:lu:u

oa VoD
cLk T(HY
RST T(LO)

GND T(COM)
”J;C DS1620

<Filename: ds1620.cul>

Device = CB280
iorst = 7
ioclk = 6
iodg = 5

As Integer

100

High iorst ‘init ds1620
Shiftout ioclk,iodg,0,12,8
Shiftout ioclk,iodqg,0,3,8

Low iorst

Do

Loop

The final value

High iorst

Shiftout ioclk,iodq, 0, &haa,8
i = Shiftin(ioclk, iodqg,4,9)
i=1

debug dec i,cr

Low iorst

Delay 100

received can be divided into 2 to obtain the

temperature.<END>

current

321

NOTE 9. DS1302 RTC

DS1302 RTC (Real Time Clock) is a chip that will acts as an electronic time
keeper. It has the ability to keep time and date in real-time. We will show
you how to implement this clock chip into your application in this note.

O sout VIN O
O siNn VsS
O ATN RES [
Od vss VDD
O ro P15
O p1 P14 1
O p2 P13 1
32768Hz O r3 P12 0
O vee O u]
-_L_\—c o sonp——d E‘é :; a]
X2 o f——] PO 0
_L’_c GND RST j—c :3 P8 :|
”l;_c DS1302 CB220
Pin Function I/O Direction | Explanation
RST Reset Input Data transfer when High
SCLK System Clock Input Clock signal
1/0 Data Input / | Data input/output
Input/Output Output

<Filename: ds1302.cul>

Const Device = CB220

Const iorst = 7

Const iodio = 6

Const ioclk = 5

Dim I As Integer

Dim adr As Byte

High iorst

Shiftout ioclk,iodio, 0, &h8e,8

Shiftout ioclk,iodio,0,0,8

Low iorst

Delay 1

High iorst

Shiftout ioclk,iodio,0,&h80,8

Shiftout ioclk,iodio, 0, &H50,8

Low iorst

Do
High iorst
adr = &h81
Shiftout ioclk,iodio,0,adr,8
i = Shiftin(ioclk,iodio, 4,8)

322

Debug Hex i,cr

Low iorst

Delay 1000
Loop

The above code will read ADDRESS 0, second’s value, and display it onto
the DEBUG window.

At the beginning of the program, we will enable writes to the DS1302 chip
and set the ADDRESS 0 to 50 seconds.

Within the Do Loop, we will read the data from DS1302. The DS1302 chip
has 6 addresses as shown below:

ADDRESS 0 (sec) | CH| 1:033:: | s& |
ADDRESS 1 (min) | 0 | 1:0 MII:\I | . M:IN . |
ADDRESS 2 (hour) 'MAI 0 |/1,°P| HR| . HE? . |
ADDRESS 3 (date) | 0 |0 |1oéATE| DéTE |
ADDRESS4(momh)| 0 | o| o|1oq MohTH: |
ADDRESS 6 (day) | 0 | 0| 0 | o| 0| DAYI |
ADDRESS 6 (year) | ' 10\:(EAR: | YEAR ' |

These addresses can be used to read and write to the DS1302.
Please note that the data is in BCD code format.
<END>

323

NOTE 10.
MCP3202 12 Bit A/D
Conversion

The CUBLOC has a 10 bit A/D converter. Without a separate chip, you can
get up to 10 bits of A/D conversion. But for greater resolution, meaning
greater precision, you can use a chip like the MCP3202. MCP3202 is a 12
bit A/D converter that supports SPI protocol. Here we will show you how to
implement this 12 bit A/D converter into your project.

O sourt VvIN O
O siNn Vss
O ATn RES O
O vss VDD
PR O ro P15 3
O p1 P14
g r2 P13
[] P12
cs vce P4 P11 0
——cHo cLk F———1 p5 P10
—{cH1 DO [F———-1] P6 PO
GND g0 7 P8
«— W;‘: MCS3202 CB220
Pin Function I/0 Direction Explanation
CS Chip Select Input Low for data communication
CLK Clock Input Clock signal
DI Data Input Input Data input from MCP3202
DO Data Output Output Data output from MCP3202

<Filename: mcp3202.cul>
Const Device = CB280
Const iodi = 7
Const iodo = 6
Const ioclk = 5
Const iocs 4
Dim I As Byte
Dim ad As Integer
Do

Low iocs

i = &bl011 'Channel O

'i = &hll1ll 'Channel 1
Shiftout ioclk,iodi,0,1,4

ad = Shiftin(ioclk,iodo,3,12)
High iocs

Debug Dec ad,cr

Delay 100

324

Loop

The MCP3202 will convert voltage coming into CHO and CH1 ports to a data
value and retain it. The user can simply use SPI communication to read
the value that the MCP3202 has converted.

The voltage inputted to the MCP320 CHO and CH1 pins must not be greater
than the voltage supplied to the MCP3202. The result of A/D conversion is
displayed to the DEBUG window.

«» Debug Terminal O] x|
Part Baud Rate Parity Data Bits: @TH ﬁ n

[comr =] 115200 =] [rere =] J6 =] @py

Close [~ Fix Right Side

<END>

325

NOTE 11.
Read and write to the EEPROM

With the EEPROM, you can store between 0.5 to 64 KB of data. Data is
retained even after powering off, allowing it to act almost as a small hard
drive. If you want to retain a temperature setting for a temperature
controller, you can simply store the value of the temperature in the EEPROM
in case of power-outs.

CUBLOC has an internal EEPROM of 4KB. For small and simple data, you
may use this internal EEPROM. In the case of larger data, you can use an
EEPROM like 24LC512 to store up to 64KB of data.

Here we will show you how to access the 24LC32 4KB EEPROM through 12C
protocol. The serial EEPROMs usually support either SPI or I2C. I2C
EEPROMs name starts with 24XXXX and SPI EEPROMs name starts with
93XXX.

O sout vIN O
O siN vss
O At RES O
O vss VDD
O po P15 1
O p1 P14
O p2 P13
Ors P12 3
A0 vee O psa P11
A1 ne B O ps P10 [0
A2 scL P6 Po A1
GND SDA p7 ps O
24L.C32 4.7Kohm CB220

<Filename: eeprom.cul>

Const Device = CB280
Dim adr As Integer
Dim data As Byte
Dim a As Byte

data = &hab6

adr = &h3
Set I2c 7,6
Do
I2cstart

If I2cwrite(&b10100000)= 1 Then Goto err proc
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)

326

a=I2cwrite (data)
I2cstop
Delay 1000
I2cstart
a=I2cwrite (&10100000
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
I2cstart
a=I2cwrite (&010100001
a=I2cread(0)
I2cstop
Debug Hex a,cr
ADR = ADR + 1
DATA = DATA + 1

Loop

err proc:
Debug "Error !"

Do
Loop

This example program will write a number to EEPROM and read from it.
When this program runs correctly, nhumbers will increment on the DEBUG
screen. You can easily modify this code to support other EEPROMs.

Note: Please wait at least 5ms after a write to the EEPROM.

<END>

327

NOTE 12.
XPORT Server program to
control multiple devices from
single PC

XPORT Custom Firmware Upload.
The first thing to do is to upload the custom firmware to your XPORT.

1. Run Devicelnstaller
2. Choose the device you wish to recover/upgrade Firmware then click
“Upgrade” (Here I selected an XPORT with address of 192.168.0.6)

@y

3. Next Please choose “Create a custom installation...”and click “Next”

8 Device Upgrade Wizard - Step 1 of 5 X

This wizard helps install firmware, applications, web pages, and other
canfiguration setings.

O Use a specific installation file

[

@ i 3 EEG TG By SRR T Teg

To continue, click Next,

328

4. Please click “Browse"~

8 Device Upgrade Wizard - Step 2 of 5

Select the firmware ROM fil to use or leave blank o keep the exisiing fimware,

Firmware (OM) File

Would you like to check the Lanironix Websit for the latest diver?
Lantronix Website

To continue, click Nex,

5. Please choose file called CUMAX_XXX.rom”.

directory as this PDF
Select a BOM or 3YS Firmware File x]

360+ [3 top6 - CuMAXSERVER ¥ 0# e mE

v =@

£l [curex 127.r0m

HD: [ROM & SYS fimmware files (=.romir. sys) v [

Stwanes
Swanos

ou may copy les over o the dovice by speciing COB paritons of indicusl
fles directy,

@00 notcopy or replace any les
Olstal les ndiidually

Ontal flos contaned in COB partions.

To contive. click Nes,

@ oty

(This file is in the same

329

7. Please click “Next” again!

8. The custom XPORT firmware that works with CuMAX Server has been
uploaded. Please wait a while and you will be able to see the XPORT after it
resets itself.

e installation completed succsstuly. Click Close to e,

» Update firmware

You can use the above method to upload new versions of custom XPORT
firmware or the original firmware too. (xpt03_XXX.rom)

First, we must find the IP address of the computer as this will serve as the
IP address that XPORT will look for and send messages.

Please go to Start->Run and type “command”.

2 qwe EI2E(L,.,

Windows XP Professiona

B =zzenaw..

330

When the DOS prompt screen comes up, please type “ipconfig” and you will
see the following screen.

i
[4]

C:#Docunents and SettingsWque>ipconfig

Mindows IP Configuration

[Ethernet adapter UMware Network Adapter UMnet8:

Connection-specific DNS Suffix
1P fddre

Subnet Mask .

Default Gateway

[Fthernet adapter UMware Network Adapter UMnetl:

Connect i pecific DNS Suffix
IP pddress.

Subnet Mask

Default Gateway -

[Ethernet adapter
Connection
1P hddre
Subnet Mask .
Default Gateway

C:WDocuments and Settingsique>

If you will pay attention to where it says “Local Area Network” you will find
your PC’s IP Address. Yes, I know mine is in different language. But as

you can see, my PC’s IP address is 192.168.0.66. Now we are ready to
rock baby!

Okay, go back to the Devicelnstaller and find that XPORT you uploaded
custom firmware to.

Lantronix Devicelnstaller 3.6.0.6

File Edit Miew Device Iools Help

QDo

Search Assign TP Configure Upgrade Tehet Web

Type Name Group, TP Address Hardware Address | Status

192.168.0.99 00-20-44-86-32-9D __Onine
192, 3

Now, select that XPORT and Click on “Configure”.

You see the following screen right?

331

[Configure Device

Boumentaton | ports | achanced
Ej}) Lantronix #Port-03.
sf 160
H A\} "
Please click on “Ports”...
[# Configure Device [@=]3)
Documentation | Ports | Advanced
a 3
Click on Edit Settings~
= Port Properiies @G
e It
podtes (T
Data bits: ﬁ
Stop bits: [t v
Flow contol: [one 3

Please click on “Advanced” tab and you will see following screen. There are

TWO “Advanced” tabs. If you followed the directions clearly, you will be at
the right "Advanced” tab like below.

332

& Port Properties.

Port Settings |[Advanced |

a
Baud Rate
DataBis
Flow Cantral
Parity
Stop Bits

a

Datagram ods

a8
Accept Passive Comnection
Auto Increment Source Port
Lacal Port
Password Required

a
Active Connection
Conmection Respanse
Modem Emulation Mode

=)
Disable Hard Disconnect
Disconnect With DTRDrop

115200
8

None
None
1

Fake

ves =
Fae
10001
False

Hone
Nane
None

Fake
Fake

Here Please change “4. Active Connection” to “Auto Start”.

Connection Response
Modem Emulation Mode
Remate Host

Remote Port

Telnet Made

Auto Start -
Mone

'with any Character

wWith Carriage Return

Maral Connection

With Active DTR

Please change Remote Host to your PC’s IP Address that we found earlier.

(Mine is 192.168.0.66.)

And change Remote Port to 59000 since CuMAX Server accepts connections

on UDP port 59000.

& Port Properties.

Port settings | Advanced |

a
Baud Rate
Datafits
Flow Cantral
parity
Stap Bits

Datagram Hodle

a
Accept Passive Comnection
Auto Increment Source Port
Lacal Port.

Passward Required

a
Active Connection
Connection Respanse
Modem Erulation Mode

=
Use Host List

Disable Hard Disconnect
Disconnet With DTRDrop

115200
8

Hane
Hane

1

Fake

ves
Fake
10001
Fake

Auto Start
Hane

333

If you have setup correctly, your screen should match the one above.
Please Click "OK"” and you Click “"OK" again.
Later, when you are testing on the internet, you can change this address to
the static IP address of the PC that the CuMAX Server will run on.

Please repeat above process for every XPORT that you want to control with
the CuMAX Server program.

NOTE: You need to install Java software before using this program. Please
go to www.java.com to download the free software.
Please run CUMAXvXXX.exe now.

fo rusns
I erepn

[Cubax Sorvor 1.9.0 Copyriaht (c) 2005 by Comile

wlr|m
oo 3

&

You will see the above screen when you first start up the program.

Server will automatically search for the XPORTSs.

How to Download an Object File

Compile and save to object file in CUBLOC Studio.

334

dit Device Run Setup Help

Hew
Open,

Ladder mport

Print Ladder
Print BASIC,
Print Setup,

Download from object fle

BASIC Section

Ladder Section

EACuSamplesttdiestiftimer.cul
EACuSamplesttestivBinary,cul
Edtssajintfuzzypermy 12.cul
EACuSamplestCuTOUCHMAXHSmantKeypadviD!,cul

Exit

CUBLOC Studio [E:WCuSamplesWdtestwtimer.cul 1

Ctl+0

(<]

Fl
F2

Loop

CuMAX

Simply select a file using the File-Open.

B CuMAX Server 1.3.0 4

File
Open

Select an object file.

Please choose a file: @)X
= A7 [DWEN | e FE-

csgntest)4, obj

L = fuzzypermul12.0bj
W= FCI? abj

;;I = Smartkeypadvidl abi
58

[timer, obj | 271(0)

[FETE ()] ae |

Select the CUBLOC/CUTOUCH you want to download to.

Searching...

0: 12345 IP: /192.168.0.6 Port: 59001
No: 10001 IP: 1192.168.0.99 Port: 59001

4. Press the iLdl run key.
5. If you get a message like below, you have successfully downloaded to
your CUBLOC or CUTOUCH.

® Finished and i OK!

Note: Anytime during the download, you can press the Q stop key to halt
download.

The L1 stop key can also be used to reset your CUBLOC module when not
downloading or monitoring.

335

How to Download a the Firmware
Select the CUBLOC/CUTOUCH you want to load a new firmware.

MHo: 123451P: 1192.168.0.6 Port: 59001
No: 10001 IP: 1192.168.0.99 Port; 59001

Click on the _fimwsieDownoad | pytton!

You will be able to see the status of the firmware download like below:
m|| |

9%

You will see a message like below if firmware was downloaded successfully.

e
@ Firmware Download Finished!

How to Monitor

Select the CUBLOC/CUTOUCH you want to monitor

Mo: 12345 IP: i192.168.0.6 Port: 59001
Mo: 10001 IP: /192.168.0.99 Port: 59001

2. Click on the monitor -— button.
3. Use the checkmarks to monitor specific relays.

[V PO-P15 75 @0 ()1 @2 ()3 @4 @5 @6 ()7

¥ P16-P31 7030 (31 (32 (33 @4 @5 @6 (17

v PisFaT 73 @0 @112)3 @4 @5 6 (17

[~ P48-Pa3 00 (30 31 2 3 (a4 06 06 7

[~ PB4-F79 0 (D001 02 03 08 08 06 OF

336

Use the relay buttons to monitor other relays.

plwulefelofr]
W TO 253 (0 @1 @2 (13 @4 @5 @6 @7
¥ T1 243 (00 O1 02 03 04 06 06 07
¥ T2 212 (@0 ®1 (12 (13 w4 @5 @6 @7

W T3 0 1 2 003 04 05 6 7

™ T4 255 (0 1 @2 @3 @4 @5 (6 @7

5. Make sure to check on the checkmark below if you are using CUTOUCH
or CB290.
[v] Check here if monitoring CuTOUCH or CB290

Please refer to Max’s Application on our forum:

http://cubloc.com/phpBB2 for latest updates, downloads, and details.

We also have VB version of CuMAX, called MAXPort on our forum for Visual
Basic users.

<End>

337

MEMO

338

Chapter 12
LADDER
LOGIC

WARNNING

If you do not use SET LADDER ON command, LADDER LOGIC will not be
executed.

339

LADDER Basics

The following is an example of one switch and a lamp.

L
If you take out the power, the following results:

If you express the above circuit diagram as LADDER LOGIC, the following
results:

PO P9

As you can see, LADDER is simply an easy way to express circuit diagrams.
A switch is comparable to the PO port and P9 is comparable to the LAMP.

There are many ways to connect other devices such as timers, counters,
and etc... The following is an OR and AND connection in Ladder Logic:

PO P2 P9

340

In this circuit diagram, PO and P2 and connected in logical combination of
AND. PO and P3 are ORed. (Which mean either PO or P3 has to be on) If
you express the above circuit diagram in LADDER LOGIC, it will be as
follows:

PO pz 2]
L1l ¢
/1 ()

P3

In CUBLOC STUDIO, the right side is not shown. In the Ladder Logic of
CUBLOC, PO, P1, P2 are called “Relays”.

341

Creating LADDER

The below screen shows you how LADDER LOGIC is created in CUBLOC
STUDIO.

& CUBLOC studio [c:¥cubloc_testf#u3-

File Edit Device Fun Setup Help
BEE ¢ XBE M EE
[F11BASIC [F2] LADDER]Ladder Mnamanic |
M ‘-l/l—| FE F? |-[C:I Fil ‘ FIZ ‘ NGT -lE:ND] I‘n’;?rt SSSE ‘u';ﬁ g;g
PE2 FE3 PBS MO PR Pl =
1 4/D—{ |)
P31
2 H |:|
PBI P8I P82 PR3 PB¢ PES MO
s HAAA A1 O
P31 "MI=WORK_ON TOGLE' Mi
s H HF ()
"M2=WORK_OFF TOGLE' M2
5 T ()
6
P2 MPG OM INPUT M3
* H— ()
M3 P4 PE2 "MPG ON-OFF TOGLE’ M5
8 = |)
M3 MS
9 H/H
M4 M5 "MPG ON LED' P4l
10 HAH | () |
A3 ¥:2 Modified Program @ 154 Bytes, Data : 1001

The red box shown above is the cursor for LADDER LOGIC. You may use
the keyboard up, down, left, and right keys or the mouse to control the red
box. After moving to the desired position, you can use keys F3~F12 to put
the desired symbol. You can also enter text for those required symbols.

342

1 Press F3 to make a contact.
| A2] | 3
F9 | F11 | F12 | NOT | END

2. Type "START” and press ENTER.
]‘{C]‘ I ‘ ‘
F3 | F11 | Fi2 | NOT

s/ ‘ o]
EMD

-||-‘— |‘—c)
F4 | F5 | F6 | F7
STA

o

2

3. Press F5 couple times and you will see that it creates a line.

-|/|-‘— I ‘—o 11 -[C]‘J' ‘L‘ /| e
Fa F5 F& F7 Fa F9 F11 F12 | MOT | END
START

1 I—D

2
4. Press F7 and type RE

4F ‘ ‘ ‘-[C] ‘]| ¢ €3 <>
F3 F4 F5 FE F? F11 F12 NOT END Insert | Delete| Undo

STERT ¥
1H| {

5 Go to the next rung Tlne) and pres ND.

‘ ‘-cc: /|| = <] <2
ri F& Fi1 FIZ MNOT | EMD Insert | Delete | Undo
ST{-\HT IﬁELAV

1A]

2]

Please press the ENTER key at the end of entering TEXT. At the very end
of the LADDER LOGIC, you must put an END command.

343

Editing LADDER Text

Editing Text
To edit an existing TEXT, please place the cursor in the desired location and
press ENTER. Now you can edit the TEXT freely as you like.

START ToM T1.100
1 / L]

Erasing a Cell

START
; % | 43
Enter SPACE key.

START D
1A

Erasing a Rung (one line)

START REL&Y
| ¢
1 I L
N2 I I ouT2
| ¢ J
2 I L] \
END
3 L 1

A rung is a row in Ladder. You can press CTRL-D to erase a rung. This
actually moves the rung to a buffer

START RELAY
| {
1 I L)
I I EMD
£ 1

2 | 1 1 L

344

Rung Recovery
To recover an erased rung, press CTRL-U.

STERT RELAY
| ¢
1 I L
N2 I—I ouT2
2 |)
I | E— .\
END

Cell Insert and Delete

START TON T0,100
|

r

1 I L 1

If you press DEL button from current position, the cell is erased and items
on the right are pulled one cell to the left.

START TOM T0.100
1 | r |
I L

If you press INS button from the current position, a blank cell is inserted
and items on the right are moved one cell right.

START TOM T0,100
|
1 | — 1

Rung Copy
When same style of rung is needed, you can press CTRL-A and it will copy
the above rung except text will not be copied.

START TON T0.100
1 I C 1
2 I C 1

345

Comments
You can enter comments by adding an apostrophe (*).

THIS 15 SAMPLE PROGRAM

~3
~

You can use a semi-colon (;) to display to the next line.

For example:
“This is Sample Program ; Date 24-Sep-2007 Comfile Technology”

"THIS 1S SAMPLE PROGRAM
DATE 24-GEP-2007 COMPFILE TECHNOLOGY

~3

346

LADDER BLOCK COPY and PASTE

You can make a selection of a block to copy and paste to different parts of

the LADDER.

UBLOC studio [c:¥Weubloc_testWu3-1018,cul 1 FEX
Eile Edit Dewice Hun Setup Help
Baldl cBR A m B =5
[FI] BaSIC [F2] LADDER | Ladder Mnemonic |
pLc | Ak (A4 |— | | | O (L1 (€¢I | L | / |I=1| O | 4O | IHO | 1HD
Yifizard F3 F4 F5 FE Fi F8 F3 Fi1 F12 | NOT | END Insert | Delete| Unda | Copy
P3l =
P L]
()
M0
{
)
MI=WORK_OMN TOGLE" M1
)
‘M2=WORK_OFF TOGLE" M2
)
N\
MPG ON IMPUT M3
)
N\
‘MPG OM-OFF TOGLE" M5
)
N\
‘MPG OM LED" Pdn
{1 =]
=il Modified Program : 154 Bytes, Data : 1001

Press

Use the mouse to click and drag to select the desired copy area.
CTRL-C to copy and CTRL-V to paste.
CTRL-X to cut and paste also.

*Please be aware that in LADDER editing, UNDO is not supported.

Similar to text editing, you can press

347

Monitoring

CUBLOC STUDIO supports real-time monitoring of LADDER LOGIC.
ClickHere

Bk g AEE M4 » o it E

Status of contacts that are ON will be displayed GREEN. Timer and
counter values will be displayed as decimal values. You can control the
monitoring speed by going to Setup Menu-> Studio option->
Monitoring speed. When the monitoring speed is too fast, it can affect
CUBLOC’'s communications as monitoring takes up resources. We
recommend value of 5 for the monitoring speed.

2 CUBLOC studio [c:#Weubloc_testwu3-1018.cul 1

File Edt Device Aun Setwp Help
EEIE IS TN R A
[FIIBASIC [F2) LADDER | Ladder Mremonic |
Manjtorin
A [[|- [22] Bolualo2g] et
Ma T0 M0l =
1 ¢
9 u ()
M1 TN T050
97 H oo0sg 1
P30 M37 M301 M2
1 ¢
98 jL i I ()
M301 M2e2
99 i (n)
Mese J0G HI SPEED PULS" P33
100 1} (1)
XPULS_H
101
P M7 M3
L ¢
102 dL i ()
M2 TI M3z
103 H u})
M3
104 H
P® MIT FZ 2 SPEED LOW END TIVE TON T1.20
105 I ab— sl g} £ oomsl =]
%11 Y91 Modified Program i 9602 Bytes, Data i 101

*Please make sure to stop monitoring before editing or downloading.

348

Time Chart Monitoring

ClickHere

Bk @ AEE M4y m it =

With Time Chart Monitoring, you will be able to see Ladder Logic contacts as
a time chart. The minimum width of the time chart is 40ms. You can use
the Zoom control function to measure the width of each pulse after stopping.
Up to 8 relays can be monitored at one time.

Device Select Com Port Select

Start / Stop

B3| Tima Chart Manhor

Sampling Time —_ |7,
Zoom control —

Cursor Move
control icon

Relay select—"_

Use/ Unuse

Time interval display- X position

To use the Time Chart Monitor, you must set Debug off in Basic. To do this,
simple add “Set Debug Off” command at the very beginning of your code.

Set Debug Off

While using Time Chart Monitor, Ladder Monitoring may not be used either.

349

WATCH POINT

When you want to watch the status of relays and timers outside the current
Ladder Monitoring screen, you can use Watch Point feature.

You can use two apostrophes (') to add a WATCH POINT. For example,
you want to see PO right next to some other relay that is on exact opposite
side of the screen.

Examples:
YPO YP1 “DO

R CUBLOC studio [c:#Wcubloc_test#wu3-1018.cul 1

File Edit Desice Run Setup Help
EEFIEIES- -1 N R 2|
[FI1BASIC [FZ] LADDER | Ladder Mnemonic |
Monits
0 Nl el e i
3
7
P PSEP3RIOG -LOWMOD ’ FUT' Mi7
el ¢
7 ke ()
R |-xcw
P57 JOG-- INPUT Mg
il ({
76 i} ()
=XCCW
PN PSS *JOG - Y+ INPUT' Mig
el ¢
77 ke ()
R |-vew
P53 JOG-- INPUT 5]
il ({
78 i} ()
e
P PED *JOG-Z+ INPUT' Mzt
el ¢
79 H el ()
R |-Ecw
Pol J0G-Z- INPUT M2
il ¢
80 i})
Zcew
81
PO PE6 PROGHI MODE JOG-HI MODE 23
82 Hul-l (=
%9 Y8 Modified Program | 9602 Bytes, Data i 101

* Please be aware that it's two APOSTROPHES(‘'), not a QUOTATION

MARK(™).
Onn
X EEH

350

Options Window

ﬂOptmns — o] x|
Ladder Style
Sizp —p——————— LADDER size adjust
Line Space ——; < LADDER line space adjust
Boarder Calar ¢~ Black & ‘White < LADDER background color

el S | _— LADDER monitorring speed setting
Fast p—————— Slow

Auto Excute mode
’V ¥ Auto Run when download

Close

«— 1 |

Auto run when download

If you select to use “Auto Run when download”,

the program will

automatically reset itself after downloading. This can become a problem for

machines that are sensitive to resets.
be able to control when the program is resetted after downloading.

By turning this option OFF, you will

In the help menu, you will find Upgrade information, and the current version

of CUBLOC Studio.

351

PLC Setup Wizard

To use Ladder Logic in CUBLOC, you must create the most basic BASIC
code. Although very simple, this can be hard for first-timers. You can use
the PLC Setup Wizard and setup the I/Os you will be using and create the
BASIC source automatically.

PLC SETUP WIZARD

F1] BA5; [FZ] LALDER]
PLC | AR (A | — | | | =<2 4141 I
W zard rl rd I [} 7 T ri r
]
PLC Setup Wizard 3]
Ladder environment edft | Qutput BASIC code review |
Device Select 1/0 maps A7D canvertor

[E— BT ouT al [AD channel 0> D10
d t=el] [8D channel 1 > D11

[~ AD channel 2 -> D12

Use | Name | 10 Alias Group [~ AD channel 3-> D13
I PO out & PO-P7 = [~ AD channel 4 -> D14
I~ High Count! ->D33 v P In [~ AD channel 5 -> D15
v P2 ot @ [~ AD channel £ -> D16
v P3 Out & [~ AD channel 7-> D17
@ High Countd ->038 AR |
¥ s Out GlRelayout Alfas thlick Name)
_ . I [ot 2Xsolout! M) (i T2 Lz
 PUWM 01,2 <- (D26~} v p7 Out CelMotort Exarnple)
] ot o Pe-P1s =] MD = SubRel
¥ pa ot e i
I~ PWM 3,45 <~ (D28~) ¥ eo otel
M e cul 142 HEEH(JW
v P2 out & =
v o3 o o M3=KOREA
W use MODBUS on CH1 v P14 out
v ms ot @
115200 -
None, 8,1 ~

I~ Use Fast Scantime

Load,., Save As,., Replace Basic Code ‘ Cancel ‘

As you can see in above screen, Device name, I/O status, alias, and other
features can be set simply by clicking.

You can set aliases for relays, set Modbus to be ON, and set the baud rate
for the Modbus.

You can always review the current BASIC code generated in real-time by
pressing [Output BASIC code review] tab.

352

PLC Setup Wizard 3
Ladder envi edit | Outgul BASIC Cade raview)|

Const Device = CE220
Qpencom 1. HEZUU 3,80.20
set Modbus

e & Bt Relayout
Usepin & Out Salout]
Usepin 7 Gut Motarl

Usepin 16,0t
Aliason

I0=4
1=CUBLOC

gl
M2=RELAY1
M3=KOREA

Cnuntrasal o

\ it ()
”n”” = Adin(D)

DD(H) Adin(1)
\rlvjpu

_D(38) = COUNT(D)
Loop

Load. Save As... Replace Basic Code | Cancel ‘

For using A/D, PWM, or COUNT, you can simply read from the D relays for
the results. For ADCO, the AD value is stored in D(10). The user can
simply read from relay D10 to find the value of ADO.

For PWM3, the user can simply write to relay D29 to output PWM.

For HIGH COUNT1, simply read relay D39. If the user wishes, he can
change the relay to store or write values by changing the BASIC code.
Please press [Replace Basic Code] when you are done to product the final
BASIC code. Please be aware that older code will be deleted at this point.

You can also save the setup to a file by clicking on [SAVE AS..]. Click on
[LOAD...] to bring back saved setup values.

353

Usage of Ladder Relay

With this feature, the user can see alias of all relays. By using this feature,
the user will be able to save a great deal of time while debugging and
developing the final product. Please go to Run->View Relay Usage to
open this window.

|

P M |F |38 |T |C |D

P relay usage ~

P1 -HL
P2 -MPG_ON

354

Relay Expression

CB220, CB280 Relays
The following is a chart that shows CB220, CB280 relays.

Relay Name Range Units Feature
Input/Output Relay P PO~P127 1 bit Interface w/
External devices

Internal Relays M MO~M511 1 bit Internal Relays

Special Relay F FO~F127 1 bit System Status

Timer T TO~T99 16 bit (1 Word) For Timers

Counter C C0~C49 16 bit (1Word) For Counters

Step Enable S S0~S15 256 steps For Step Enabling
(1 Byte)

Data Memory D D0~99 16bit (1 Word) Store Data

P, M, and F relays are in bit units whereas T, C, and D

To access P, M, and F relays in word units, you can use WP, WM, or WF.

are in word units.

Relay Name Range Units Feature

WP WP0O~7 16 bit (1 Word) | Relay P Word Access
WM WMO~WM31 16 bit (1 Word) | Relay M Word Access
WF WFO~WF7 16 bit (1 Word) | Relay F Word Access

WPO contains PO through P15. PO is located in the LSB of WPO and P15 is
located in the MSB of the WP0. These relays are very useful to use with
commands like WMOV.

355

CB290 Relay
The following is a chart that shows CB290 relays. CB290 has more M, C, T,
and D relays than CB220 and CB280.

Relay Name Range Units Feature

Input/Output Relay | PO~P127 1 bit Interface w/ External

P devices

Internal Relays M M0~M1023 1 bit Internal Relays

Special Relay F FO~F127 1 bit System Status

Timer T TO~T255 16 bit (1 Word) For Timers

Counter C C0~C255 16 bit (1 Word) For Counters

Step Enable S S0~S15 256 steps(1 | For Step Enabling
Byte)

Data Memory D DO~511 16 bit (1 Word) Store Data

P, M, and F relays are in bit units whereas T, C, and D are in word units.
To access P, M, and F relays in word units, you can use WP, WM, or WF.

Relay Name Range Units Feature

WP WP0O~7 16 bit (1 Word) Relay P Word Access
WM WM0O~WM63 16 bit (1 Word) Relay M Word Access
WF WFO~WF7 16 bit (1 Word) Relay F Word Access

WPO contains PO through P15. PO is located in the LSB of WPO and P15 is
located in the MSB of the WPO. These relays are very useful to use with
commands like WMOV.

356

Ladder symbols

Contact A, Contact B
Contact A is “Normally Open” and closes when a signal is received. On the

other hand, Contact B is “Normally Closed” and opens when a signal is
received.

—o_l_o— —elo—

4k 4+

(A) Normal Open (B)Normal Close

Input, Output Relay Symbol

Input/Output relays are the most basic symbols among the relays in Ladder
Logic.

ContactA
PO P1 Pz
(e F (
M > J
Contact B Output Relay

Function Relays
Function Relays include timers, counters, and other math operation relays.

PO TOM TO.700
| r 1

| N

Function Relay

357

Internal Relay

Internal Relay (M) only operates within the program. Unless connected to
an actual external port, it is only used internally. You may use M relay as
input or output symbol.

ACTION
|
I
0 W0 100.00
I Ir]
I L)

M0
()

P relays that are not used as I/0 ports
CUBLOC supports P relays from PO to P127. P relay is directly connected to

I/0 ports 1 to 1. But most models of CUBLOC have less than 128 I/O ports.
In this case, you may use the unused portion of P relays like M relays.

358

Using I/0s

CUBLOC I/O ports can be used by both BASIC and LADDER. Without
defined settings, all I/O ports are controlled in BASIC. To control I/O ports
in LADDER, you must use the “Usepin” command and set the I/O ports to
be used in LADDER.

USEPIN 0, IN
USEPIN 1,0UT

The above code sets PO as input and P1 as output for use in LADDER.
The inner processes require that USEPIN will be re-flashed in LADDER. Re-
flashing means that the Ladder will read I/O status beforehand and store

the status in P relays. After scanning, LADDER will re-write the status of
I/0 ports into P relays.

INPUT REFLASH
LADDER SCAN

OUTPUT REFLASH

il

In BASIC, IN and OUT commands can be used to control I/O ports. This
method directly accesses the I/O ports, whether it is read or writes. In
order to avoid collision among the two, the I/Os used in BASIC and LADDER
should be specified.

One a port is declared with USEPIN command, it can only be used in
LADDER and cannot be accessed in BASIC.

USEPIN 0,IN, START
USEPIN 1,0UT, RELAY

You can also add an alias such as START or RELAY as shown above for easy
reading of the Ladder Logic.

359

Use of Aliases

When creating Ladder Logic using “Relay numbers” such as PO, P1, and MO,
the user can use alias to help simplify their programs.

PO PE

1 ()

F1 IJ

’ l

STARTKEY MAIMMIOTOR
H |)

St

44

In order to use alias, you need to declare them in BASIC. You can simply
use ALIAS command to use ALIAS for relays you desire to use.

ALIAS MO = MAINMOTOR
ALIAS M2 = STATUS1
ALIAS M4 = MOTORSTOP

You have an option of either using USEPIN or ALIAS command to use
aliases in LADDER.

360

Beginning of LADDER

CUBLOC executes BASIC first. You can set LADDER to start by using the
command “SET LADDER ON”. When this command is executed, LADDER is
executed consistently within the specified scan time of 10 milliseconds.

If you do not use SET LADDER ON command, LADDER LOGIC will not be
executed.

SET LADDER ON

Declare devices to use

You must declare the device to be used so the compiler knows. The
following are examples of how to use the CONST DEVICE command.

CONST DEVICE = CB220 ' Use CB220.
or

CONST DEVICE = CB280 ' Use CB280.

This command must be placed at the very start of the program.

361

To Use Ladder Only,
without BASIC

You must at least do a device declaration, port declaration, and turn on the
LADDER for BASIC even if you are going to only use Ladder.

The following is an example of such minimal BASIC code:

Const Device = CB280 'Device Declaration

Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY

Usepin 2,In,BKEY

Usepin 3,0ut,MOTOR

Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder
Do
Loop 'BASIC program will run in infinite loop/

362

Enable Turbo Scan Time Mode

In order to use both BASIC and LADDER, a scan time of 10ms is supported
for LADDER. If you would like to enable Turbo Scan Time Mode when not
using BASIC, you can follow the example below.

LADDERSCAN command can be used inside a DO...LOOP to enable Turbo
Scan Time Mode.

Depending on the size of the Ladder program, this scan time MAY change.
For small programs less than 50 rungs, a scan time of 500us to 1ms are
possible.

Const Device = CB280 'Device Declaration
Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY
Usepin 2, In,BKEY
Usepin 3,0ut,MOTOR
Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
LadderScan
Loop

F16 is a special relay for checking the current scan time. You can connect
it to an I/O port as shown below and check it with an oscilloscope.

F16

PO
I)

Below is an example of a conditional case where Turbo Scan Time is used.
Only when Relay MO0 is ON, will the Turbo Scan Time be enabled.

Do
Set Ladder On ‘10 ms Scan when MO is OFF
Do While M(0) =1
LadderScan 'Only Execute when M is ON
Loop
Loop

363

Things to Remember in LADDER

Input symbol must be placed at the very left side of the Ladder Logic.

* Qutput symbol must be placed at the very right side of the Ladder Logic.

E3 CuBLOCstudio [untitled.cul 1
File Edit Run Setup Help

=10l x|

BOedgEBE(Alr =g

[F11Bagic [F2] LADDER |

ir -m-l L |—c) < :||-[c:]

EMD

T

1—|I

g vad

364

Identical outputs must not collide.

PO P5
L e
I {
RO 4
I ¢

I ()

You may not use more than one vertical line as shown below.

More than 1 division will give compile error

F Pl P&
alasl (
EQ FB
| ()
P3 P
|)
PO P1 FB
alaal (
EE PR
| {
I hY
PO P3 P
|)

If you have unnecessary block such as below, it will cause a compilation

error.

Thisline isunnecessary

[31] /P1
| | ()
PU}JE(S

365

Ladder Logic moves from top to bottom.

PO PI

H

PO [} Pr
H HH)
PO 1

H
PO |P3 IJ
H

Function Relay can not be on the left side of the Ladder Logic.

P
| -

When a Ladder Logic becomes complex, simply divide them so you can see
and understand them better as shown below.

PO P F
4FDI ()
Pz P&

I ()

P3 P7
\—H ()

PO P PS5
| (
PO P2 P&
| (
_Pf 7

I ()

366

ladder instructions

Ladder low level instructions

Command Symbol Explanation
LOAD —I I— Contact A (Normally Open)
LOADN _l ; I_ Contact B (Normally Closed)
ouT :) Output
NOT NOT (Inverse the result)
S
STEPSET Step Controller Output (Step Set)
L]
STEPOUT Step Controller Output (Step Out)
L]
MCS Master Control Start
L]
MCSCLR Master Control Stop
L]
DIFU Set ON for 1 scan time when HIGH signal
—_I_— received
DIFD Set ON for 1 scan time when LOW signal
| received
SETOUT Maintain output to ON
€L]
RSTOUT Maintain output to OFF
€L]
END End of Ladder Logic
€L]
GOTO Jump to specified label
€L]
LABEL Label Declaration
€L]
CALLS Call Subroutine
€L]
SBRT Declare subroutine
€L]
RET End Subroutine
€L]

367

High level instructions

Command | Parameter | Explanation

Data Transfer Commands

WMoV s,d Word Data Move

DWMOV s, d Double Word Data Move
WXCHG s, d Word Data Exchange
DWXCHG s, d Double Word Data Exchange
FMOV s,d,n Data fill command

GMOoV s, d,n Group move command
Increment/Decrement Commands

WINC d Increment 1 to the Word
DWINC d Increment 1 to the Double Word
WDEC d Decrement 1 to the Word
DWDEC d Decrement 1 to the Double Word
Math Commands

WADD s1,52,d Word Add

DWADD sl,s2,d Double Word Add

WSUB sl,s2,d Word Subtract

DWSUB s1,s2,d Double Word Subtract
WMUL sl,s2,d Word Multiplication

DWMUL sl,s2,d Double Word Multiplication
WDIV sl,s2,d Word Division

DWDIV s1,s2,d Double Word Division
Logical Operation Commands

WAND sl,s2,d Word AND

DWAND sl,s2,d Double Word AND

WOR sl,s2,d Word OR

DWOR sl,s2,d Double Word OR

WXOR sl,s2,d Word XOR

DWXOR sl,s2,d Double Word XOR

Bit Shift Commands

WROL d Word 1 bit Shift Left

DWROL d Double Word 1bit Shift Left
WROR d Word 1 bit Shift Right
DWROR d Double Word 1 bit Shift Right

368

LOAD,LOADN,OUT

LOAD is for Normally Open Contacts and LOADN is for Normally Closed
Contacts.

LOAD OUT.
e & T~
| {)
I L%
P1 Pa
/| ()

Relays that can | P M F S C T D Constants
be used

LOAD (0] 0] 0 (0] (0] 0]
LOADN
ouT [0) o

369

NOT, AND,OR

NOT Symbol

PO FE
o ,, <)
PO P Pg
B I {)
PO Pg
- ()
g \AND
_|

NOT symbol inverses the results. If PO is ON then P5 will be OFF.

AND is when two relays are horizontally placed next to each other. Both
relays PO and P1 must be True(ON) in order for P5 to be True (ON).

For OR operation, two relays are vertically placed next to each other.
When either PO or P1 is ON, P5 will be ON.

The following is an example of BLOCK AND and BLOCK OR.

BLOCKAND
PO P2 F&
I ‘(/, ¢
| LY
P1 P3
— H
PO P2 P5
— | ()
P Pa
_| I_I I_ BLOCK OR

370

SETOUT, RSTOUT

SETOUT will turn ON P5 when PO turns ON and will keep P5 ON even if PO
turns off.

On the other hand, RSTOUT will output OFF when P1 is ON and will keep P5
off even when P1 turns OFF.

PO SETOUT PS

| r

I L]
P1 RSTOUT PS5

} C]

Relays that can | P M F S C T D Constant
be used s
SETOUT 6] 0 o
RSTOUT o) o

po [

P1 I I

p5s __| |

371

DIFU, DIFD

This command DIFU turns ON the output 1 scan time when input goes from
OFF to ON.
Conversely, DIFD turns OFF the output 1 scan time when input goes from
ON to OFF.

DIFU
PO Ps
| — ')
I | LS
P PB
| | s)
I C S
DIFD
PO ! :
P 1
b5 —f+ 1 SCAN :
- : i 1 SCAN

372

MCS, MCSCLR

The command MCS and MCSCLR allow for the LADDER LOGIC between MCS
X and MCSCLR X to be executed when turned ON. If MCS is OFF, the
LADDER LOGIC in between MCS X and MCSCLR X will not be executed.

By using this command, the user is able to control a whole block of LADDER
LOGIC.

MCS # (0~7)

MCSCLR O

T 1

In the above example, when MO turns ON, LADDER LOGIC between MCS 0
and MCSCLR are executed normally. If MO is OFF, P5 and P6 will turn OFF.

MCS number can be used from 0 to 7. MCS number should be used from 0
increasingly to 1, 2, 3, etc... MCS 1 must exist inside MCS 0 and MCS 2
must exist inside MCS 0. Likewise up to 7 MCS blocks can be used. When
MCS 0 is OFF, all MCS inside MCS 0 will turn OFF.

When MCS turns OFF, all outputs within that MCS block will turn OFF, Timer
will be resetted, Counter will be stopped.

Command When MCS is ON When MCS is OFF

ouT Normal Operation OFF

SETOUT Normal Operation Maintain status after MCS turned OFF
RSTOUT Normal Operation Maintain status after MCS turned OFF
Timer Normal Operation Reset to default value

Counter Normal Operation Maintain status after MCS turned OFF
Other Normal Operation Stop Operation

Commands

373

The following screenshot shows MCS used within another MCS.

: MO MCS 0 :
C H r 1 |
I |Po PE 1
| I {1
I ___|_'_ ___________________ . () 1
H MCE T | I
1 H | s 1 !
,: P : PE
noH [
1 MCSCLR | | I
] r 1 I |
| L 1
T S S |

! MCSCLR 0 1
! £ 1 !
I 1
I 1
e e e e e e e e e e e 4

MCS.

|
] MCS 0
| |
| 4'{ L 1 1
| PO P5 1
1 s
 H {) I
| MCSCLR 0 I
' 1

| 1
1
T T T T T T T sy, T T T T T T T 1
P H :] !
1 {m |
L H ()
| MCSCLR 0 |
| C 1 |
| |
| |

374

Step Control
S relay are used for step control. The following is the correct format for
step control.

Relay (0~15)

/ St (02s9)
$7:126

In Step Control, there’s “normal step” and “reverse step”. For normal step,
we can simply use the STEPSET command.

STEPSET

PO STEPSET S0:1
| -]
I L

P1 STERSET 50:2
| r 1
I L

P2 STEPSET 50:0
| C 1

This command STEPSET will turn ON the current step if the previous step
was ON. Since it operates in one step at a time, we call it STEPSET. For
example, in the above ladder diagram, when P1 turns ON, S0:2 is turned
ON if S0:1 is turned ON. SO0:1 is turned OFF. When P2 turns ON, SO0:0 is
turned ON and other steps are turned off. S0:0, or step 0 is used for reset.
Otherwise STEPSET will move in order.

S s—
S —
=
—

P2
so:0 [

soit [1

s0:2 1

375

STEPOUT

This command STEPOUT will only 1 step to be enabled at all times. The
last step to be turned ON will be the step to be enabled at any given
moment.

PO STEPOUT 50:1
| r 1
| L)

P1 STEPOUT 50:2
| r 1
| L

P2 STEPOUT 50:0
| L |

When P1 turns ON, S0:2 turn ON. When PO turns on S0:1 turns ON. A
step will be kept on until another step is turned ON.

po []

P]

P2 1
50:0 1
s0:1 | |
so:2 [1

376

TON, TAON

When input turns ON, timer value is decremented and output turns on when
timer is done. There are two kinds of timers, one that works in 0.01
second units and another that works in .1 second units.

Type of Timer Time units Maximum Time
TON 0.01 sec 655.35 sec
TAON 0.1 sec 6553.5 sec
START TOM T0,100
I r]
I =
START TADM T1.100
I r]
I L

There are 2 parameters with commands TON, TAON. For the first
parameter, you can choose between TO to T99 and for the second
parameter, you may use a humber or a data memory such as DO.

Usable Relays P M F S C T D Constants
TON, TAON [e] [e] o] o)

In the above LADDER diagram, when START turns ON, TO Timer will start
from zero to 100. When 100 is reached, TO will turn on. Here, 100 is
equal to 1 second for TON and 10 seconds for TAON.

1sec

<+—>

START | |

TO

When START turns OFF, the timer is reset to original set value of 100 and
TO turn off too. TON, TAON commands will reset its timer values upon
powering OFF. To use the features of battery backup, you can use KTON,
KTAON which will maintain its values when powered OFF. Below is an
example of how to reset TAON.

F1 [0} TAON T0, 100
I {4} L]
T0 I_l M0
| I~ { J
I - \

377

TOFF, TAOFF

When input turns ON, output turns ON immediately. When the input turns
OFF, the output is kept ON until set amount of time. Like TON and TAON,
there are 2 commands for two different time units.

Type of Timer Time units Maximum Time
TOFF 0.01 sec 655.35 sec
TAOFF 0.1 sec 6553.5 sec
START TOFF T0.100

I r]

I L
START TAQFF T1.100

| r 1

I =

There are 2 parameters with commands TOFF, TAOFF For the first
parameter, you can choose between TO to T99 and for the second
parameter, you may use a number or a data memory such as DO.

Usable Relays P M F S C T D Constants
TOFF, TAOFF o (6] o) 6]

In the above LADDER diagram, when START turns ON, TO Timer will
immediately turn ON. After START turns OFF, timer will start decreasing
from 100 to 0. When 0 is reached, TO will turn OFF.

Here, 100 is equal to 1 second for TON and 10 seconds for TAOFF.

1sec

+—>
START

To | |

378

CTU

This command is an UP Counter. When input is received the counter is
incremented one. When the counter counts to a specified value, the set
relay will turn ON at that point. There is a Reset input so the counter can
be reset as needed.

PULSE CTU CO,100
I -
I C
RESET
| R
I e
100 pulse
PULSE |_||_||_||_|\’|_||_||_||_|
reseT L1 [l
co

CTD

This command is a DOWN Counter. When input is received the counter is
decremented one. When the counter reaches 0, the set relay will turn ON
at that point. There is a Reset input so the counter can be reset as needed.

PULSE CTD C1, 100
I Ie
RESET
| R
I L
100 pulse
puLse — OO0 OAAMAN
RESET |_| |_|
C1

379

UP/DOWN COUNTER

Below is a simple way of how UP Counter can be used to make a UP/DOWN
Counter.

FO CTU 0,100
I -

- c

F1
| R

— | L

Pe WOEC C0

= | [c 1
I il | =

PO is for counting UP, P2 is for counting DOWN, and P1 is for resetting the
COUNTER. When Counter reaches 100, CO turns ON.

po _[NONONOAND OAOARGOD

P2 [annnn

p1 [0
Co
COUNT

co 1

380

KCTU

This command is exactly same as CTU command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTU command will lose its count value when the module is
powered off.

P KCTU 0,100
I [
Pz }
| i}
[K
100 pulse
—
o __OONOJIOONMN
p1 1 \ 1

/)
Use RESET to set the

counter to 0 atthe Power off & on

beginning

When using this command for the very first time, please use the RESET
signal to reset the counter value. Otherwise counter will start at the last
value it was set. (random if not set before)

KCTD

This command is exactly same as CTD command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTD command will lose its count value when the module is
powered off.

KCTU, KCTD must be used with modules that support “Battery-Backup”
such as the CB290.

381

Comparison Logic

Compare 2 Words(16 bit) or 2 Double Words(32 bit) values and turn on
Output when the conditions are satisfied.

Comparison Data Types Explanation

Command

=,s1,s2 Word(16 bit) When s1 and s2 are same Output turns ON.

<>,s1,s2 Word(16 bit) When s1 and s2 are different, Output turns
ON.

>,s1,s2 Word(16 bit) When s1 > s2, Output turns ON.

<,sl,s2 Word(16 bit) When s1 < s2, Output turns ON.

>=,5s1,s2 Word(16 bit) When s1 >= s2, Output turns ON.

<=,s1,s2 Word(16 bit) When s1 <= s2, Output turns ON.

D=, s1,s2 DWord(32 bit) When s1 and s2 are same Output turns ON.
D<>, s1, s2 DWord(32 bit) When s1 and s2 are different, Output turns
ON.

D>, s1,s2 DWord(32 bit) When s1 > s2, Output turns ON.
D<, s1,s2 DWord(32 bit) When s1 < s2, Output turns ON.
D>=, s1, s2 DWord(32 bit) When s1 >= s2, Output turns ON.
D<=, s1, s2 DWord(32 bit) When s1 <= s2, Output turns ON.

= 00T 0
| 'd]
I \

You can mix different comparisons as shown below:

A
‘II
O
=
wr
o
E
=

When either DO=T1 or D1<100 and if C0>=99, MO will turn ON. In other
words, either DO has to equal to value of T1 or D1 has to be less than 100
while CO must be larger or equal to 99.

382

How to store
Words and Double Words

Byte is 8 bits, Word is 16 bits, and Double Word is 32 bits.

1BYTE
~
(NN NN SN NN

1 WORD

DOUBLE WORD

There are 2 ways to store Word of Double Word size of data. A Word or
Double Word can be stored starting from the LOW BYTE or from the HIGH
BYTE. In CUBLOC, it is stored from the LOW BYTE or LSB(Least Significant
Byte).

As you can see below, 1234H is 0 34

stored in Memory Address 0 and ; 12

12345678H is stored in Memory 3

Address 5. In every Memory 4

Address, 1 byte of data is stored. g ;2
7 34
8 12
9

The relays C, T, D are in units of Words. To store a Double Word data, 2
Word spaces will be required, meaning two relay spaces. Below is an
example of store a Double Word data, 12345678H. D1 gets 1234H and DO
gets 5678H.

DO 5678
D1 1234
D2
D3
D4

383

Binary, Decimal, Hexadecimal

To program well, we need to know binary decimal, and hexadecimal
numbers. The following chart shows the relationships between these three
types of humber representation.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In CUBLOC's Ladder Logic, we express binary and hexadecimal numbers in
the following manner:

Binary: 00101010B
Hexadecimal: OABCDH

We put a B at the end of the binary number and an H for hexadecimal
numbers. To clearly identify that ABCD is a nhumber, we can put a 0 in
front of the hexadecimal number.

(E.g. : OABH, OA1H, OBCDH)

*In BASIC, it is slightly different from LADDER in the way you express

binary and hexadecimal numbers. We use &B100010 or &HAB to express
those type of humbers.

384

WMOV, DWMOV

WMOV s, d
DWMOV s, d

The command WMOV moves 16 bit data from s to d. DWMOV can be used

for 32 bit data.

Usable Relay C T D Constants
s (Source) [¢] 0 (0] 6]
d (Destination) 0] 0 0]
START W0 100, DO
I r]
I L)
MO DwkA0N 1234H. D2

r

When input START turns ON, DO will get 100.

get 1234H.

DO
D1
D2
D3
D4

LS

1

When INO turns ON, D2 will

100

1234H

385

WXCHG, DWXCHG

WXCHG s, d
DWXCHG s, d

The command WXCHG exchanges data between s and d. WXCHG is for
exchanging 1 Word and DWXCHG is for exchanging Double Word.

Usable Relays P M F S C T D Constants
s 0] [e] 0
d o 6] 0]
START WkA0Y 100, DO
_| | r 1
I L
W0 123, D1
T 1
MO WxCHG DO, 01
| C 1

When START turns ON, DO gets 100 and D1 gets 123. When INO turns ON,
DO and D1 exchange their data. The result is as shown below:

DO 123
D1 100
D2
D3
D4

386

FMOV

FMOV s, d, n

Store value in s to d and n number of times after that to additional locations.
This command is usually used for initializing or clearing memory.

Usable Relays P M F S C T D Constants
s (6] 0] o
d (6] 0 (6]
n (0]
START WrAOY 100, DO
| r 1
| L
ACTION FrMOY 00015
I r]
I L
Below is result of LADDER execution:
DO 100
D1 100
D2 100
D3 100
D4 100
D5 100

*Notice: Please Set n less than 255.

387

GMOV

GMOV s, d, n

Store value starting at s to d by n memory locations. Please make sure not
to overlap memory locations as this could cause data collisions.

Usable Relays P M F S C T D Constants
s 6] [e) 0]
d (6] (6] (6]

n o
ACTION GMOY DO,D10.5
} C]

Below is result of LADDER execution:
DO 12
D1 34
D2 56
D3 78
D4 90
D5
D6
D7
D8
D9
D10 12
D11 34
D12 56
D13 78
D14 90
D15
D16

*Notice: Please Set n less than 255.

388

WINC, DWINC, WDEC, DWDEC

WINC d
DWINC d
WDEC d
DWDEC d

WINC increments Word value in d by one.

DWINC increments Double Word value in d by one.

WDEC decrements Word value in d by one.
DWDEC decrements Double Word value in d by one.

Usable Relays P M F S C T D Constants
d (6] (0] 6]
START WOy 100, DO
| C 1
ACTION WINC DO
I Ir]
I L9
Below is result of LADDER execution:
DO 99
D1
D2
D3

389

WADD, DWADD

WADD si,s2,d
DWADD si, s2, d

Add s1 and s2 and store result in d.
WADD is for Word values and DWADD is for Double Word Values.

Usable Relays P M F S C T D Constants
sl 0] 0 0] 0]

s2 o 6] 0] 0]

d 0] 0] 0

WSUB, DWSUB

WSUB s1,s2,d
DWSUB s1,s2,d

Subtract s2 from s1 and store result in d.
WSUB is for Word values and DWSUB is for Double Word Values.

Usable Relays P M F S C T D Constants
sl 0] 0 0] 0]
s2 6] 6] 0] 0]
d 0] 0] 0
START Wiy 100, DO
I r]
| |5
ACTION WSUB DO, 5, D1
I Ir]
I L

D1 gets 95 in the above LADDER diagram.

390

WMUL, DWMUL

WMUL si,s2,d
DWMUL sl, s2, d

Multiply s1 and s2 and store result in d.
WMUL is for Word values and DWMUL is for Double Word Values.

Usable Relays P M F S C T D Constants
sl 0 0] o) [¢]
s2 [¢] 0] 0] [e]
d [¢] 0 [e)
START WhAOY 1234H. DO

| r 1
ACTION WhAUL DO, 12344, 1

| r

L J
I

The result of 1234H * 1234H is stored in D1 as a double word of 14B5A90H.

DO 1234H
D1 5A90H
D2 14BH
START D0y 123456H, DO
| r 1
I L
ACTION DwhUL DO, 1234H, D2
| € 1

The result of 123456H * 1234H is stored as 4B60AD78H in D2

DO 3456H
D1 0012H
D2 0AD78H
D3 4B60H
D4 0
D5 0

391

WDIV, DWDIV

WDIV si,s2,d
DWDIV sl, s2, d

Divide s1 by s2 and store the result in d and leftover in d+1.
WDI1V is for Word values and DWDIV is for Double Word Values.

Usable Relays M S C T D Constants
sl (6] 0 o o
s2 o 0 0] o
d o o 0]
}_A{CTION WDV D0,02.04
| r 1

DO 1234H

D1

D2 3

D3

D4 611H

D5 1
F\{CTION DWDIY DO.02.04

| r 1

DO 5678H

D1 1234H

D2 7

D3 0

D4 0C335H

D5 299H

D6 5

D7 0

392

WOR, DWOR

WOR si,
DWOR sl

s2, d
s2, d

Do Logical operation OR on s1 and S2 and store result in d.
WOR is for Word values and DWOR is for Double Word Values.

Usable P M S cC|T D | Constants
Relays
sl O |O |O |O
s2 O |O |O |O
d O |0 |O
ST&RT WhADY 1200H.00
_| | r 1
| |9
WRACY 34H,D1
L 1
ACTION WOR D0.01.02
_I | r 1
I L]
The result of above ladder diagram:
DO 1200H
D1 34H
D2 1234H

393

WXOR, DWXOR

WXOR s1, s2, d
DWXOR s1, s2, d

Store result of s1 XOR s.
WXOR is for logical operation XOR in WORD units whereas DWXOR is for
DOUBLE WORD units.

Usable Relays P M F S C T D Constants
sl (6] 0 o) 6]
s2 o [e] 0] o
d o o 0]
START WO 1234H.00
_| | r 1
I L)

WO OFFH.D1

T |
ACTION WxOR D0,D1.D2
ay c 1

The following is result of above LADDER:

DO 1234H
D1 OFFH
D2 12CBH

When you want to invert specific bits, you can use XOR logical operation.

394

WAND, DWAND

WAND si,
DWAND si,

s2, d
s2, d

Store result of s1 AND s2. WAND is for logical operation AND in WORD
units whereas DWAND is for DOUBLE WORD units.

The results of execution of LADDER above:

You can use AND operation when you want to use specific bits only.

DO
D1
D2

Relays that | P M S C T D Constants
may be used
sl 6] o 0] 0]
s2 6] 0] o O
D 6] o o
START WO 1234H.00
_| | r 1
I L
WO OFFH.D1
L 1
ACTION WanND D0.D1.D2
} C]

1234H

OFFH

34H

395

WROL, DWROL

WROL d
DWROL d

Rotate the value on relay d 1 (double) word to the left. The value left gets
stored in the Carry flag. WROL moves one word whereas DWROL moves
double word.

Relays that may | P | M F S C T D Constants
be used

G]+

BKEY WROL D0
| — r
| - T 1

If DO has 8421H, the following results:

DO 0843H
D1

396

WROR, DWROR

WROR d
DWROR d

Rotate the value on relay d 1 (double) word to the right. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Relays that | P M F S C T D Constants
may be used
d [e] 0 o
I—» —d —> —>
BKEY WROR D1
/| C r 1
| | =

If D1 has 8421H, the following results:

DO
D1 0C210H

397

GOTO, LABEL

GOTO label
LABEL label

The command GOTO will jump to the specified label. Label is for declaring
labels.

START GOTO Sk
_| | r 1
I L
BEKY TOM TO,100
_| | r |
I L
LABEL Sk_1
L]

When START turns ON, the LADDER program will jump to label SK_1

In the below example LADDER diagram, when DO equals CO, the program
will jump to SK_1.

=00.Ca GOTO 5K
} £ 1

398

CALLS, SBRT, RET

CALLS label
SBRT label

CALLS will call a sub-routine.
SBRT is the starting point for a sub-routine.
RET is the ending point for a sub-routine.

there are sub-routines

————————————————————————————— Main Program
.' o
|
: START CALLES CHE_RTM 1
el c 1 |
I RET :
: L 1 RETmust be used when
|

Start of sub-routine

! I
: - 1 |
| |BKEY TON T0,100 |
| | r 1 |
I ' N !
| FET < 1 : End of sub-routine
E—
L S 1
EMD ¢
T 1 End of Ladder

Please be aware that when adding sub-routines to your program, you need
to add RET to the end of main program to differentiate from sub-routines.
END goes at the very end of main program and sub-routines in this case.

399

INTON

INTON s,d

INTON is same as WMOV command except it can cause an interrupt in
BASIC part of CUBLOC.

Usually Relays P M F S C T D Constants
s (Source) (6] [¢] 0O o
d (Destination) o 6])

PO IMTOM 3.00
| - r 1
| o | =

P INTOMN 2,00
| - r 1
I il | =

400

Special Relays

You can use special relays to find out about the current status of CUBLOC or
use them for timing functions and applications.

Special Relay Explanation
FO Always OFF
F1 Always ON
F2 Turn on 1 SCAN time at POWER UP (Set Ladder On).
F3
F4
F5
F6
F7
F8 1 SCAN On every 10ms
F9 1 SCAN On every 100ms
F10
F11
F12
F13
F14
F15
F16 Repeat ON/OFF every 1 Scan time.
F17 Repeat ON/OFF every 2 Scan times.
F18 Repeat ON/OFF every 4 Scan times.
F19 Repeat ON/OFF every 8 Scan times.
F20 Repeat ON/OFF every 16 Scan times.
F21 Repeat ON/OFF every 32 Scan times.
F22 Repeat ON/OFF every 64 Scan times.
F23 Repeat ON/OFF every 128 Scan times.
F24 Repeat ON/OFF every 10ms
F25 Repeat ON/OFF every 20ms
F26 Repeat ON/OFF every 40ms
F27 Repeat ON/OFF every 80ms
F28 Repeat ON/OFF every 160ms
F29 Repeat ON/OFF every 320ms
F30 Repeat ON/OFF every 640ms
F31 Repeat ON/OFF every 1.28 seconds
F32 Repeat ON/OFF every 5.12 seconds
F33 Repeat ON/OFF every 10.24 seconds
F34 Repeat ON/OFF every 20.48 seconds
F35 Repeat ON/OFF every 40.96 seconds
F36 Repeat ON/OFF every 81.92 seconds
F37 Repeat ON/OFF every 163.84 seconds
F38 Repeat ON/OFF every 327.68 seconds
F39 Repeat ON/OFF every 655.36 seconds
F40 Call LADDERINT in BASIC
F41
F42

401

* If you write 1 to F40, you can create a LADDERINT in BASIC. Please
refer to ON LADDERINT GOSUB command for details.

* F2 causes 1 Scan ON at the time of BASIC’s SET LADDER ON command.

*Blank special relays are reserved. Please do not use them.

402

APPENDIX

Appendix A. ASCII CODE

Code char. Code char. Code char. \ Code char.
00H NUL 20H SPACE | 40H @ 60H)
01H SOH 21H ! 41H A 61H a
02H STX 22H " 42H B 62H b
03H ETX 23H # 43H C 63H C
04H EOT 24H $ 44H D 64H d
05H ENQ 25H % 45H E 65H e
06H ACK 26H & 46H F 66H f
07H BEL 27H ' 47H G 67H g
08H BS 28H (48H H 68H h
09H HT 29H) 49H I 69H I
O0AH LF 2AH * 4AH] 6AH j
0BH VT 2BH + 4BH K 6BH k
0CH FF 2CH , 4CH L 6CH I
ODH CR 2DH - 4DH M 6DH m
OEH SO 2EH . 4EH N 6EH n
OFH SI 2FH / 4FH 0o 6FH 0
10H DLE 30H 0 50H P 70H p
11H DC1 31H 1 51H Q 71H q
12H DC2 32H 2 52H R 72H r
13H DC3 33H 3 53H S 73H s
14H DC4 34H 4 54H T 74H t
15H NAK 35H 5 55H U 75H u
16H SYN 36H 6 56H Vv 76H \
17H ETB 37H 7 57H W 77H w
18H CAN 38H 8 58H X 78H X
19H EM 39H 9 59H Y 79H y
1AH SUB 3AH : 5AH Z 7AH z
1BH ESC 3BH ; 5BH [7BH {
1CH FS 3CH < 5CH \ 7CH |
1DH GS 3DH = 5DH] 7DH ¥
1EH RS 3EH > 5EH N 7EH ~
1FH us 3FH ? 5FH 7FH DEL

404

Appendix B.
Note for BASIC STAMP users

When using Parallax’s Basic Stamp compatible development board, please
be aware of the following:

There is a capacitor on the Basic Stamp compatible development boards
which causes download error in CUBLOC Studio. Please short (or take out)
the extra capacitor connected to the DTR of the board as shown below.
CB220 has a this capacitor on the chip itself.

sout 1 >~ _ 22 vin

SIN [2 23 vss

ATN O 3 221 RES

vss [4 21 vDD

PO O 5 20 P15

P1 06 190 P14

P27 18 P13

P3 Os 170 P12

P4 o 160 P11

P5 [10 15[P10

;7_7 P6 O 11 140 P9
P7 [12 13[1 P8

sout 1~ _ 22ppvin

SIN O 2 231 vss

ATN O 3 221 RES

vss O 4 213 vbD

Po O 5 203 P15

P1 06 190 P14

P2 7 1803 P13

P3 s 170 P12

P4 o 161 P11

P5 [10 15[P10

;7_7 P6 O 11 140 P9
Short here Pr g2 5P pe

405

Appendix C. Using Output Port
on the CB290 / CT1720

Warning : CB290 rev A/ CT1720 rev A Output ports

Please be aware of the following when using CB290 (rev A) or CT1720 (rev
A) with output ports (24 through 55).

When using CB290 or CT1720 with a backup battery (CB290 Proto-Board,
Baseboard 64M, and CT1720), the data memory is saved during power OFF.

Even the output on the I/O ports are saved to memory.

When powered ON, the output ports will recover from the status it was in at
power OFF.

This is to let the modules be able to continue their existing processes in case
of power outage.

Please be aware that when there are unknown values and battery backup is
used, there can be garbage values at power ON, meaning unknown values

outputting on the output ports.

Please use regular I/O ports if you need to make sure that the output needs
to be OFF at power ON.

Using Output ports on the CB290 / CT1720 (Rev B)

The CB290/CT1720 (Rev B) output ports (P24-P55) are in high impendence
(High-Z) state in order to prevent garbage values outputting at power ON.

You must use “Set OUTONLY ON” command to set the CB290 / CT1720
output ports to output status.

Set Outonly On

406

Appendix D.

CB280 Proto Board Schematics

LONE

GO
veers

N
Jack

COm
HEAGER-BX2P0OL
[—

|
E
B
[
;
e o

0N]
HEADER-BX2P0OL

[—

ol dlert

o2k

mset 5

LM25737
[
.
_ g)
HD
g
BLOCK I
o
= S3alE |2
- 1 o 330uH
5
. . . YL >
H1 % Ll
coIL
i R2
0DF £ 35V \7! kil Iﬁ c2 \ - I_l 3 F 330
47U /38 & H5a1a T300F /160
T T o
L’ L’ \—’ * i
— = — — — — Ll |I_|l
CONS CONS CON?
HEAGER-8¥2POL HEAGER-AXZPOL HEADER-1X2POL
PiE == P P32 ke P32 P15 [Lo Yam[Y]
P17 P17

COMA
HEADER-8¥2POL
il

CONE
HEADER-8XZPOL
P40 =
P
Pez W
P43 g
44 =

407

CB280 Proto Board Circuit Schematics (continued 1)

+54

FROGRAM CONNECT

RY
s

aEw sEcEn s moEno o CUNET dumeer b
A 45 BLionioanatees SR e = R3 4 4
A z z 47K 4.7K
L —|rg| [
PBE
4
A Py S04
Z L Fsel
H i =351
——# BESRERSaReRensy
AR RN RS AL
M\ RN A B CUNCT
e S0uT 50UT SEF pag |28 CrT
L] S gy Pl P
WTH 1IN pyz 4B (1] 4 lon
DSUB3P —ivsst Pa3 m P43 Exi
PO PO 101 Pdi Pai
Py Fi P45 43 P45 R
Pe F? CBZ30 P4 A P15
= P3 P3 P47 P17 +5u TH
5 Pt 2 pe7 40 P27 CUNET
PS5 10]pg pag (22 P75
&l PG pzs |8 F25
A7 F7 P74 P24
4 g e 25 128 Jumper
Py aung 28
PO L3 RY = - RS RE
Glp T T g o 4.7k 4,7
SR er eI illoann [8l
SfiFhannanninnan .
AEEE R o] o _ i
T S
+5Y
COT
ﬁu 3¢
£ n prepaconesno
p— O ghEEaLnne=on
o = Y LERARURTABAGL 5y BN
1 4 +517
CONtS
12¢
RES [L

T
R

TRCT_SH

RESET SWITCH

nsuggr

= = R5232 PORT CIRCUIT

408

459 +5Y
CUMET Jumper r +5Y
e R S 1 A
RN NS R T o 2 Re RiG
1ok H = 47K 47K
= 2
W < o
P15 4
45 REs [P17 | :
A RESCT swimen SMUTACT S
= S = 2 o]t] of o] 1| o i of 1 il BN
bbb ki AR A CONd
NS E e e S e T 6 CLNET
Frffosioieey e PPy fieaasy
KTl -
B Pgg PgE
SN L] P50 P55
2T P3alt P5a
533 P53
Pl Razty Pz L5 GHD
Fi
2 pans P50 oz
o EE i “
Pl 120 Jumper
o co2a0 i o »
F§ P38 7y P3E
£l P37 F37 g (3 R Ri2
PG P36 o7 P36 2 E 87K 47K
P57 P35 22 P35 a- g
LT P3G i P22
1] P33 P33 823 Il
P50 P32 P32 g %
s V53T —
s AVREF 22 &
PEF TTLRe TIL_RY
e EL TTLITY conz1
Py [0 P [
RES Uhmlmm P4E
PasEE P45
g Pad[2 P4l
Py FE P43
B0 (253 P42
oo
CnnmeENERESS s BT Oer pras oo
& FEZE aa +3¥
e oI z_a_és, e 4
Pl =
SouT
S
BTH
SUPER_CAP TopmETmBrEmoCEE pReramoTer 7
SRERERPRRERTI s PEFRIETETE

PROGRAM COMNECT

DSLBSP

CB290 Proto Board Schematics

Appendix E.

409

inued 1)

(cont

ICS

it Schemat

Ircul

CB290 Proto Board C

LMZGE75T

COMH
:
CNI;
wCr z] O
HC
T eSOV =
e
no.:m_ =)
[258 o
saaeh o
T 1 =
= el
BLOCK ,
H1
con
It
5 Lo 1g
mngiy 3y O0UF/35Y _/ ATuF £35V & e
cont coud
HEADER-A¥2P0OL HEADER-8¥2POL
PR = P Pra ik P4
Pl B E P FIS =] P35
Rz El Pz R25 E P26
PI El I P3 P27 L P27
P R Pi P28 + P28
Pg ; z] p2g =z P33
] — B e £
P7 P7 P31 P31
comg cous
HEWDER-8¥zPOL HEADER-8¥2POL
) = g P32 3= [
4 3 P33 P33
Fi0 5 Rin F3i 5 R34
lail 3l I P P35 E P35
P2 e >z P12 P38 E P35
I ik e mio i K p3
P15 Tl L& Fi5 5 Ik P3g
T cont3
HEADER-8%zP0OL HEADER-8Y2P0OL
P i P1g Pap 3o pan
P17 B P17 P41 '3 PAY
P = Pa3 Foof Raz
P1g] Pl P43 E 7] P43
Pz E o P20 P44 i (i
EE—eg——l he—mie—g
P23 i L P23 P47 iz = PAT

3
I_l c3 330
F gy
_/ 330U /18 DT
4 i

LED d’

COM
HEADER-3¥2POL
il

T
&
E]

ol

o
o

5 T
Pa4

] e
COME

HEADER-3¥2POL
1

Rk
Zi
ol

he]
i
A

Be CoE—

TONT
HEADER-8¥2POL

h]
&
7

B

3
32
22

Fl
P71 ﬁm

QN1
HEADE R-8¥2PaL
e

=l

COMIE
HEADER-8¥2POL
1

P7T
L] £y
F7a

LONE
HEADER-4%7POL
1

13
o —

—

410

CB290 Proto Board Circuit Schematics (continued 2)

>
‘” %gu-
EaiH
7
000 Q0 Qg Qg
I} ‘?M-
2
i
i
T
00 0000 0 O
!;§!!§!!§!!§!;§1!§!!§!!§
il Hepee
TRz
EaiH
57
R5
av33
0 8 3 8§ 3§ £ 3
0 0 0 0 0 U U
Pé l?é V§>§>§ ébéhé
AR SR SR AR AR A O
1 | Hcoue
| ;
:
]
e
X33

411

CB290 Proto Board Circuit Schematics (continued 3)

S ETHERNET DOWNLOAD PORT CIRCUIT -
43
ot H
W
X iy o7 (L CHO, o CHIE CHBL o CHI
- 15 _ll ————<Jsout HE =
ouF Hers el 0.F oz 3 3 -
\ﬁ v+ I WAMB (12 LEVEL i o 15K i ==
T e » — b =
\7! cio <n. me__u_ m awmmu QuT
By j 7 o
AU |m,-w0:— THNg— DATE_IN
A/ —R2IN RFOQUT—— ﬁw“. —”
WAY2520 —Elies
o 7|m_mmm TRy — Ti_tw [R8 T
. 45 LEVEL ATH PIN => RIS 30K YRORT
.10F
o i

T4
23

iy

<The End>

412

Appendix F. CB280CS

cusLOoc

CHIP SET CB280CS

COMFILE

TECHNOLOGY
www.comfiletech.com

The CB280CS has exactly the same
features as aregular CB280 chip except
it's in a chipset format.

By using the CB280CS, the useris able
to solder the chipset directly onto their
PCB.

This will lower your overal | production
cost while integrating CB280 into your
product seamlessly.

Since this chipset has same features as
aregular CB280, we recommend you
develop your applications on the CB280
before going into production with the
chipset version.

- CB280 Chipset version for mass-production
and OEMs

-All features as a regular CB280

- 80KB Flash Program Memory

- Basic Data Memory : 2KB

-LADDER Data Memory : 1KB

-EEPROM : 4KB- /O Ports : 49

-RS8232 Channels : 2 (Including Download)

- Package: 64PIN QFP, 8PINSOIC

Note

85883886
s w222222¢2¢
SpExe RN BRI 5B 38 33
zszfddaddese il
oonnooononaonononNAnn
o fEEEEEsesEERsa e
rxo Oz a3 e
Txo ofs =
p1s s 45 P
(Pwmg P19 s P =
(Pw 1/ INTO) P20 6 _ oy = S
AN | CUuBLOD b~
NP2z Os PRl =
aNtyP2s Oo CB280CS w03 P
(ss)po 1o . . 39 [Pa4
[C =1 Main Chip Y =
mos) P2 OJ12 7 [Pa2
onsoyps [1s B =
P4 Q14 35 [P
w0y ps 15 L=
(W) P 1s =
00000000000 ooooog
reclhbastzegsz oo xe
seeppfig gt EESi s
O S 835
2z Z
3¢
VDD I, s VsS
R5], CUBLOG; 3 RO
CB280CS
R4 3 Sub Chip 6 R1
R3 4 5 Rro

The CUBLOC Chipset comes witha MAIN CHIP and SUB CHIP.
The CB220 iscurrently not available as a chipset but you may use the CB280CS

for applications developed in CB220.
The CB290 isonly provided as a module.

cuBLOC”

CB280CS

MAIN CHIP

COMFILE 0527 R1

Sub Chip - Pin out

PINNo.| Name Function
1 VDD Power Supply
2 R5 0SC INPUT
3 R4
i R3
5 R2
6 R1 1/0 PORT 1
7 RO RS232 rx
8 vsS Ground

COMFFILE

TECHNOLOGY

550 Pilgrim Drive Suite K Foster City, CA94404

Call:1-888-9CUBLOC 1-888-928-2562 www.comfiletech.com

413

Main chip electrical Characteristics

Electrical Characteristics

Note: Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrallers manu-

factured on the same process technology. Min and Max values will be available after the device is characterized.

Absolute Maximum Ratings*

Operating Temperature.....

Storage Temperaturs

Voltage on any Pin except RESET
with respect to Ground ..

Maximum Operating Voltage
DG Current per /O Pin
DC Current Ve and GND Pins..........

Voltage on RESET with respect to Ground......

. -55°C to +125°C

.-65°C to +150°C

0.5V to V0.5V
-0.5V to +13.0V
.. 6.0V
40.0 mA
. 200.0 MA

DC Characteristics

T = -40°C to 85°C, Vg = 2.7V to 5.5V (unless otherwise noted)

“NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

Symbol | Parameter Condition Min Typ Max Units
Vi Input Low Voltage EEC;E.II.XJQSI" Ll 0.5 0.2 Vg™ v
Vi, Input Low Voltage émi1sz:;C|E:jernal 05 0.1 Vg™ v
' Input Low Voltage RESET pin -0.5 0.2 Vg v
Vi Input High Voltage E’ECSeE‘T):’T:s“ i 06 Voo Voo +0.5 v
Vi Input High Voltage e 0.7 Vee® Vgo +0.5 v
Vi Input High Voltage RESET pin 0.85 Vec? Vee +0.5 v
Vou Output Low Voltage® lo, =20 mA, Ve =5V 07 v
(Ports ABCD, E,F,G) | I =10mA, Vgo =3V 05 v
Vo Output High Voltage! Iy = -20 mA, Ve = 5V 4.2 v
(Ports ABC,D, E,F,G)) | Igy=-10mA, Voo =3V 2.4 v
N Input Leakagg Vee = 5.5V, pin low 10 WA
Current IO Pin (absolute value)
s Input Leakagg Vee = 5.5V, pin high 10 wA
Current I/O Pin (absolute value)
Rast Reset Pull-up Resistor 30 60 kQ
Reen PEN Pull-up Resistor 30 60 kQ
Rpy 1/0 Pin Pull-up Resistor 20 50 kQ

414

Main chip packaging information

PIN 1

PIN 1 IDENTIFIER

-

| D
C% 07 |
\" ‘ A1—’ A2 LA
= =L
COMMON DIMENSIONS
{Unit of Measure = mm)
SYMBOL | MIN NOM MAX | NOTE
A - - 1.20
Al 0.05 - 0.15
A2 0.95 1.00 1.05
D 15.75 16.00 16.25
D1 13.90 14.00 14.10 | Note 2
E 15.75 16.00 16.25
Notes: 1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable E1 =0 00 14.10 | Note 2
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum B 0.30 - 0.45
plastic body size dimensions including meld mismatch.
3. Lead coplanarity is 0.10 mm maximum. € g8 - 020
L 0.45 = 0.75
e 0.80 TYP

415

Sub chip electrical Characteristics

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratingst
Ambient temperature under bias.

......... . 40 to +125°C
Storage temperaiure .. ST PSPPI PO PP PP PTPRPPRPRPPTPRRPRPPRPRIE o 1+ 1 O (s I o £+11 A 0
Voltage on VDD with respecllo\/ss OO TE TS S PR PO OO OO PP UEPTOPFPPTPIUTUTOPIUPIPRUURUOPRPRUPRE | NG B (o X0 1< X51)
Voltage on MCLR with respect to Vss-0.3 to +13.5V
Voltage on all other pins with respect to Vss -0.3V to (VDD + 0.3V)
Total powerdissipalion“). ST U O J S ..800 mW
Maximum current out of VSS PiN ..ot e e sr s ssresns s are s s sesnanae e SO0 MA
Maximum current into VoD pin.......... B SUSSY . i 250 MA
Input clamp current, Ik (VI <0 or Vi > VDD) + 20 mA
Output clamp current, lok (Vo <0 or Vo >VDD) + 20 mA
Maximum output current sUNk by any 11O PiN.......oeii s sns e 20 MA

Maximum output current sourced by any I/O pin

Maximum current sunk by all GPIO .

Maximum current sourced all GPIO.

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - X IOH} + X {(VDD-VOH) x IOH} + (VoI x loL).

1 NOTICE: Stresses above those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

Note: Voltage spikes below Vss atthe MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus,
a series resistor of 50-100 © should be used when applying a "low" level to the MCLR pin, rather than pulling
this pin directly to Vss.

416

Sub chip packaging information

E
E1
L[: =
p
- -
b 0
] [12
BJ n [O =
45° - o [~
] | |

Lp——n. AL@ "
KA

Units INCHES* MILLIMETERS
Dimension Limits MIN NOM MAX MIN NOM MAX

Number of Pins n 8 8

Pitch P 050 1.27

Overall Height A .053 .061 .069 1.35 1.55 1.75
Molded Package Thickness A2 .052 .056 .061 1.32 1.42 1.55
Standoff § A1l 004 007 010 0.10 0.18 0.25
Overall Width E 228 237 244 5.79 6.02 6.20
Molded Package Width E1 146 154 157 3.71 3.01 3.99
Overall Length D 189 193 197 4.80 4.90 5.00
Chamfer Distance h 010 015 020 0.25 0.38 0.51
Foot Length L 019 025 030 0.48 0.62 0.76
Foot Angle o 0 4 8 0 4 8
Lead Thickness c .008 .009 .010 0.20 0.23 0.25
Lead Width B 013 017 020 0.33 0.42 0.51
Mold Draft Angle Top o 0 12 15 0 12 15
Mold Draft Angle Bottom B 0 12 15 0 12 15

* Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254mm) per side.

JEDEC Equivalent: MS-012

Drawing No. C04-057

417

Appendix G.
CUBLOC BASIC Command summary

Comman Usage
d
Adin () Variable = ADIN (Channel)
Variable : Variable to store results (No String or Single)
Channel : AD Channel Number (not I/O Pin Number)
Alias ALIAS Relayname = AliasName
Relayname : Relay name such as PO, MO, TO (Do not use D area)
AliasName : An Alias for the Relay chosen (up to 32 character)
Arc ARC x, vy, r, start, end
Bcd2bin Variable = BCD2BIN(bcdvalue)
Variable : Variable to store results (Returns LONG)
bedvalue : BCD value to convert to binary
Bclr BCLR channel, buffertype
channel : RS232 Channel (0~3)
buffertype : 0=Receive, 1=Send, 2=Both
Beep BEEP Pin, Length
Pin : Pin number (0~255)
Length : Pulse output period (1~65535)
Bfree Variable = BFREE(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0~3)
buffertype: 0=Receive Buffer, 1=Send Buffer
Bin2bcd Variable = BIN2BCD(binvalue)
Variable : Variable to store results (Returns Long)
binvalue : Binary value to be converted
Blen Variable = BLEN(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0~3)
buffertype: 0=Receive Buffer, 1=Send Buffer
Bmp BMP x, vy, filenumber, layer
X,y : X,y position to display BMP
Filenumber : BMP File number
Layer : Layer to display BMP
Box BOX x1,vyl1, x2,y2
Boxclear BOXCLEAR x1,vy1,x2,y2

418

Boxfill BOXFILL x1, y1, x2, y2,logic
logic : 0=0R, 1=AND, 2=XOR
Bytein Variable = BYTEIN(PortBlock)
Variable : Variable to store results (No String or Single)
PortBlock : I/O Port Block Number (0~15)
Byteout BYTEOUT PortBlock, value
PortBlock : I/O Port Block Number. (0~15)
value : Value to be outputted between 0 and 255.
Circle CIRCLE X, vy, r
Circlefill CIRCLEFILL X, vy, r
Checkbf Variable = CHECKBF(channel)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel (0~3)
Color COLOR value
Cls CLS
Clear CLEAR layer
Cmode CMODE value
value : 0=BOX type, 1=Underline type
Const CONST name [as type] = value
Const CONST type name [as type] = value [,value, value, value...]
(Array) Type = Byte, Integer, Long, String Single
Contrast CONTRAST value
value : Contrast Value
Count Variable = COUNT(channel)
Variable : Variable to store results. (No String or Single)
Channel : Counter Channel number (0~3)
Countreset | COUNTRESET channel
Channel : Counter Channel (0~3)
Csroff CSROFF
Csron CSRON
Dcd Variable = DCD source
Variable : Variable to store results. (No String or Single)
Source : source value
Debug DEBUG data

data : data to send to PC

419

Decr DECR variable
Variable : Variable for decrementing. (No String or Single)
Defchr DEFCHR code, data
Code : Custom character code (&hdb30 ~ &hdbff)
Data : 32byte bitmap data
Delay DELAY time
Time : interval variable or constant
Dim DIM variable As variabletype [,variable As variabletype]
Variabletype : Byte, Integer, Long, Single, String
Dotsize DOTSIZE value, style
Dprint DPRINT string
Dtzero DTZERO variable
Variable : Variable for decrement. (No String or Single)
Eadin Variable = EADIN (mux)
Variable : Variable to store results (No String or Single)
mux : AD input pin Combination MUX (0~21)
Eeread Variable = EEREAD (Address, BytelLength)
Variable : Variable to store result (No String or Single)
Address : 0 ~ 4095
ByteLength : Number of Bytes to read (1~4)
Eewrite EEWRITE Address, Data, BytelLength
Address : 0 to 4095
Data : Data to write to EEPROM (up to Long type values)
ByteLength : Number of Bytes to write (1~4)
Ekeypad Variable = EKEYPAD(portblockIn, portblockOut)
Variable : Variable to store results (Returns Byte)
PortblockIn : Port Block to receive input (0~15)
PortblockOut : Port Block to output (0~15)
Ellipse ELLIPSE x, vy, rl,r2
EIfill ELFILL x,vy,rl,r2
Font FONT fontsize, efontwidth
fontsize : 0~8 Font Selection
efontwidth : 0 = fixed width, 1=variable width
Freqout FREQOUT Channel, FreqValue
Channel : PWM Channel (0~15)
FregValue : Frequency value between 1 and 65535
Get Variable = GET(channel, length)

420

Variable : Variable to store results (Cannot use String,
Single)

channel : RS232 Channel (0~3)

length : Length of data to receive (1~4)

Getstr Variable = GETSTR(channel, length)

Variable : String Variable to store results
channel : RS232 Channel

length : Length of data to receive

Geta GETA channel, ArrayName, bytelength

channel : RS232 Channel (0~3)

ArrayName : Array to store Received data (No string or Single)
Bytelength : Number of Bytes to store (1~65535)

Glayer GLAYER layernumber
Layernumber : Set the graphic layer. (0,1,2)

Glocate GLOCATE x,y

Gpaste GPASTE X, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop
Gprint GPRINT string
Gpush GPUSH x1, y1, x2, y2, layer
Gpop GPOP x, vy, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop
High HIGH Pin
Pin : I/O pin number
Hpaste HPASTE X, y, layer
Hpop HPOP x, vy, layer
Hpush HPUSH x1, y1, x2, y2, layer

I2cstart I2CSTART

I2cstop I12CSTOP

I2cread Variable = I2CREAD(dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

421

I2cwrite

Variable = I2CWRITE data
Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)
data : data to send (Byte value : 0~255)

In Variable = IN(Pin)
Variable : The variable to store result (No String or Single)
Pin : I/O pin nhumber (0~255)
Incr INCR variable
Variable : Variable for increment. (No String or Single)
Input INPUT Pin
Pin : I/O pin nhumber (0~255)
Keyin Variable = KEYIN(pin, debouncingtime)
Variable : Variable to store results (No String or Single)
Pin : Input Pin (0~255)
deboucingtime : Debouncing Time (1~65535)
Keyinh Variable = KEYINH(pin, debouncingtime)
Variable : Variable to store results (No String or Single)
Pin : Input Pin (0~255)
deboucingtime : Debouncing Time (0~65535)
Keypad Variable = KEYPAD(PortBlock)
Variable : Variable to store results (Returns Byte, No String or
Single)
PortBlock : Port Block (0~15)
Layer LAYER layerlmode, layer2 mode, layer3 mode
Layerimode : Set Layer 1 mode (0=0off, 1=0n, 2=flash)
Layer2mode : Set Layer 2 mode (0=off, 1=0n, 2=flash)
Layer3mode : Set Layer 3 mode (0=0off, 1=0n, 2=flash)
Ladderscan LADDERSCAN
Light LIGHT value
value : Back light 0=0OFF, 1=0ON
Line LINE x1,vy1, x2,y2
Linestyle LINESTYLE value
Lineto LINETO X,y
Low LOW Pin
Pin : I/O pin nhumber (0~255)
Locate LOCATE X,Y
Menu Variable = MENU(index, pos)

Variable : Variable to store results

422

(1 = selected, 0 = unselected)
Index : Menu Index
pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

Memadr Variable = MEMADR (TargetVariable)
Variable : Variable to store results (No String or Single)
TargetVariable : Variable to find physical memory address
Menucheck | Variable = MENUCHECK(index, touchx, touchy)
Variable : Variable to store results
(1 if selected, 0 if unselected)
Index : Menu Index Number
Touchx : Touch pad x axis point
Touchy : Touch pad y axis point
Menu MENUREVERSE index
Reverse Index : Menu index number
Menuset MENUSET index, style, x1, y1, x2, y2
Index : Menu Index Number
Style : Button Style; 0=none, 1=Box, 2=Box with Shadow
X1,y1,x2,y2 : Menu Button location
Menutitle MENUTITLE index, X, Y, string
Index :Menu index humber
X,y : Title location based on left upper corner of button
string : Name of the menu
Ncd Variable = NCD source
Variable : Variable to store results. (No String or Single)
Source : source value (0~31)
Nop NOP
Offset OFFSET X,y
On int ON INTx GOSUB label
X : 0 to 3, External Interrupt Channel
On ON LADDERINT GOSUB label
ladderint
On pad ON PAD GOSUB label
On recv ON RECV1 GOSUB label
On timer ON TIMER(interval) GOSUB label
Interval : Interrupt Interval 1=10ms,
2=20ms......65535=655350ms
1 to 65535 can be used
Opencom OPENCOM channel, baudrate, protocol, recvsize, sendsize

channel : RS232 Channel (0~3)
Baudrate : Baudrate (Do not use variable)

423

protocol : Protocol (Do not use variable)
recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
sendsize : Send Buffer Size (Max. 1024, Do not use

variable)
Out OUT Pin, Value
Pin : I/O pin number (0~255)
Value : Value to be outputted to the I/O pin (1 or 0)
Output OUTPUT Pin

Pin : I/O pin number (0~255)

Outstat Variable = OUTSTAT(Pin)
Variable : Variable to store results. (No String or Single)
Pin : I/0O Pin Number (0~255)

Overlay OVERLAY overmode
overmode : Logical Mode (O=or, 1=and, 2=xor)

Paint PAINT X,y
Pause PAUSE value
Peek Variable = PEEK (Address, Length)

Variable : Variable to Store Result. (No String or Single)
Address : RAM Address.
length : Length of Bytes to read (1~4)

Poke POKE Address, Value, Length

Address : RAM Address

Value : Variable to store results (up to Long type value)
length : length of bytes to read (1~4)

Print PRINT String / Variable
String : String
Variable : When using variables/constants,
String representation of the variable/constant will be printed.

Pset PSET X,y

Pulsout PULSOUT Pin, Period
Pin : Output Pin (0~255)
Period : Pulse Period (1~65535)

Put PUT channel, data, bytelength

channel : RS232 Channel (0~3)

Data : Data to send (up to Long type value)
Bytelength : Length of Data (1~3)

Putstr PUTSTR channel, data...
channel : RS232 Channel. (0~3)
Data : String Data (String variable or String constant)

424

Puta PUTA channel, ArrayName, bytelength
channel : RS232 Channel. (0~3)
ArrayName : Array Name
Bytelength : Bytes to Send (1~65535)
Pwm PWM Channel, Duty, Period
Channel : PWM Channel Number (0~15)
Duty : Duty Value, must be less than the Width.
Period : Maximum of 65535
Pwmoff PWMOFF Channel
Channel : PWM Channel. (0~15)
Ramclear RAMCLEAR
Reverse REVERSE Pin
Pin : I/O Pin Number. (0~15)
Set SET DISPLAY type, method, baud, buffersize
display type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
Method : Communication Method 0=CuNET, 1=COM1
baud : Baud rate (CuNET Slave address)
Buffersize : Send Buffer Size
Set SET DEBUG On[/Off]
debug
Set i2c SET I12C DataPin, ClockPin
DataPin : SDA, Data Send/Receive Pin. (0~255)
ClockPin : SCL, Clock Send/Receive Pin. (0~255)
Set SET LADDER On[/Off]
ladder
Set Set Modbus mode, slaveaddress
modbus mode : 0=ASCII, 1=RTU (Currently, only ASCII
supported)
slaveaddress : Slave Address (1 to 254)
Set SET OUTONLY On[/Off]
outolny
Set SET PAD mode, packet, buffersize
Pad mode : Bit Mode (0~255)
packet : Packet Size (1~255)
buffersize : Receive Buffer Size (1~255)
Set SET RS232 channel, baudrate, protocol
rs232 channel : RS232 Channel (0~3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)
Set SET UNTIL channel, packetlength, untilchar
until channel : RS232 Channel. (0~3)

packetlength : Length of packet (0~255)
untilchar : Character to catch

425

Set SET INTx mode
Int x : 0 to 3, External Interrupt Channel
mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge
Set SET ONGLOBAL On[/Off]
Onglobal
Set SET ONINTx On[/Off]
onint
Set SET ONLADDERINT On[/Off]
onladderint
Set SET ONPAD On[/Off]
onpad
Set SET ONRECVO On[/Off]
onrecv SET ONRECV1 On[/Off]
Set SET ONTIMER On[/Off]
ontimer
Shiftin Variable = SHIFTIN(clock, data, mode, bitlength)
Variable : Variable to store results. (No String or Single)
Clock : Clock Port. (0~255)
Data : Data Port. (0~255)
Mode : 0 = LSB First (Least Significant Bit First), After Rising
Edge
1 = MSB First (Most Significant Bit First), After Rising
Edge
2 = LSB First (Least Significant Bit First), After Falling
Edge
3 = MSB First (Most Significant Bit First), After Falling
Edge
4 = LSB First (Least Significant Bit First), Before Rising
Edge
5 = MSB First (Most Significant Bit First), Before Rising
Edge
bitlength : Length of bits (8 to 16)
Shiftout SHIFTOUT clock, data, mode, variable, bitlength
Clock : Clock Port. (0~255)
Data : Data Port. (0~255)
Mode : 0 = LSB First (Least Significant Bit First)
1 = MSB First (Most Significant Bit First)
2 = MSB First(Most Significant Bit First) , create ACK (For 12C)
variable : Variable to store data (up to 65535)
bitlength : Bit Length (8 to 16)
Style STYLE bold, inverse, underline
bold : 0=Normal, 2 or 3 =Bold
inverse : 0=Normal, 1=Inverse
underline : 0=Normal, 1=Underline
Sys Variable = SYS(address)

Variable : Variable to store results. (No String or Single)
address : Address. (0~255)

426

Tadin

Variable = TADIN(Channel)
Variable : Variable to store results. (No String or Single)
Channel : AD Channel Number (Not pin number, 0~15)

Time

Variable = TIME (address)
Variable : Variable to store results. (No String or Single)
address : Address of time value (0 to 6)

Timeset

TIMESET address, value
address : Address of time value (0 to 6)
value : time value. (0~255)

Udelay

UDELAY time
time : interval (1~65535)

Usepin

USEPIN I/0, In/Out, AliasName
I/0 : 1I/O Port Number. (0~255)
In/Out : "In” or "Out”
AliasName : Alias for the port (Optional)

Utmax

UTMAX variable
Variable : Variable for decrement. (No String or Single)

Waittx

WAITTX channel
channel : RS232Channel. (0~3)

Wmode

WMODE value
value : 0=FAST, 1=SLOW

427

A
ABS ... 96
PAYD) 1\ P 104, 418
ALIAS 93, 106, 360, 418
AND ..o 370
Application Notes 299
ARC ...covvviiiiiiieneenenn, 227,418
ArC COS .uvviviniiiiiieeceeaeas 96
ArC SiNe ..o 96
ArCTan ..vveieiee s 96
=] = 1V 74
ASC .o 101
ATN oo 36
AVREF.... .o 104
B
Backup Batteryc....... 286
BASE-Board........cccovuveninnennen 30
BASIC interpreter..........cceeens 29
battery backup............ccceueeie. 41
baudrateccovvvieiiiinennnes 159
BCD2BIN......cvvvuvenaanns 107, 418
BCLR ...oiviiiiiiiiicieeans 108, 418
BEEP.....ciiviieieiieiiannns 109, 418
BFREE.......ccocvveienannns 110, 418
BIN2BCD......cvvvnvenannns 111, 418
DItS cvnvvieie 75
BLEN.....oooiiiiiieiieinennns 112, 418
BMP..ooeiiieiiieeeees 228, 418
(210, R 221, 418
BOXCLEAR.........cceuvennns 222,418
[2]0), i {1 I 222,419

428

Byte v 69
BYTEINovvvvvieiieeeenns 113, 419
BYTEOUTovvvvveenennns 114, 419
bytes ..coviviiiiiii 75
C
CALLS....ciiiiieieieeeee 399
CB220 couiviiiiiiiieineeeeeeineens 35
CB280 ..uivviveeeieeneeeeeeeeens 38
CB280 relays.....ccocovevnveniennes 355
CB280CSvvviriiinceinians 48
CB290 ..uiviiiiieieneeeeeeieens 41
CB290 relays.....cccoveuveninnennen 356
CheckBf ...cccvviiviiinnn. 115, 419
chipset.....cccovviiiiiniii 48
CHR..eoei e 101
CIRCLEovvvveneenennnn, 222,419
CIRCLEFILL «..vvvvviieiieieeeennns 223
CLCD iiviiviie et 204
CLCD command table........... 210
CLCD DIP switch........ceeuvennns 209
CLEARovviviiiiicei, 215, 419
CLS i 208, 215, 419
CMODE......ccovvvvveeennn. 221,419
COLOR......ovvvenernennn, 226, 419
COMPArISONS ...vvvivirninieninnannes 382
CON e 77
constant arrays..........cceeuvennens 78
Constants.......ovvviiiiniinennnns 77
ContaCt A 357
Contact B....ooevveiiieiienenne 357
CONTRAST ...vvvvnennennn 217,419
COS.uiiniiiiiiii s 96
COUNT v 116, 419

COUNTRESET 118, 419

CSG Dip switchccovevuvennnns 234
CSG module.....cccveuvenennnne. 233
CSGDEC....cciiiiviiiiiiiieienens 236
CSGHEX...ciiviiiiiiieiieiieneenan, 236
CSGNPUT .cevvvvvneeeeieeieens 235

CUBLOC I/O ports.......c...u... 143
CUBLOC STUDIO........cecevvvnnns 52
Cubloc Study board 1 Schemetic

...................................... 247
CUuCANVAS ..., 293
CUTOUCH. ..o 272
CuTOUCH Dimensions 275
CuTOUCH I/0O Ports............. 282

D

data memory space............... 73
DCD evveeeveieieeeeieeee s 119, 419
DEBUG........coevvviieennns 120, 419
deC. it 98
declare the device............... 361
DECR......oevviiiiiiniinannn, 123, 420
DEFCHRccvvvieennns 227, 420
DELAY....ccovvviiiiienieianns 124, 420
DF o 372
DFEN .o 372
digital thermometer............. 321
DIM ., 69
Din Rail .ccovoviiiiiiiiiiiceeenns 24
DO...LOOP......cceveieviiininnnn 125
DOTSIZE.......cccvvvvennannn 226, 420
Double Word size................ 383
DOWN Counter.......cccovuenens 379

DP.eeiiiie 99
DPRINT ...eiieiiiieieveieneeeeaeas 224
DS1620 ..ceuviiinieiineeieieieennnn 321
DTZERO........cocvvvennnnen 126, 420
DWADD ...cooviiiiiiiiiiieieieeeans 390
DWAND ..o 395
DWDEC......cccvieerinerenniennnennns 389
DWDIV ..o 392
DWINC ...cuiiiiiiiiieeiieeeeneanas 389
DWMOVciiiiiiiiiieieeiaens 385
DWMUL .ovvvvviieiineeieeeeeeeen 391
DWOR ..o 393
DWROL...cuiiviiiiiieiieieenannns 396
DWROR ...ciiiiiiiiiieieeeeens 397
DWSUB......ovivierineennneinennn 390
DWXCHGcovviiiiiiiiiinaeans 386
DWXOR ..o 394
E
EADIN ..vvvivviiiieiineeins 128, 420
EEPROM............... 130, 249, 326
EEREADcccevvnnnnnen 127, 420
EEWRITEcccevvvnnenen 130, 420
EKEYPADovvvveennnns 131, 420
= I I PP 223
ELLIPSEcoovvivviennns 223, 420
EXP oo 96
express binary and hexadecimal
....................................... 384
F
FABS ..o 97
Flash Memory.......ccovevvnveninnns 34
FLOAT i 98
FLOOR....ciiiiiiiiiiiiiiiieieceas 97
FMOV . 387
FONT .oeviivieeieeneeeins 219, 420
FOR:“NEXT .evvvvvriiirnniennnennn, 132
FREQOUTevvrivveerenen, 133, 420
function code.........ccoeeuennnnn. 256

Function Relays..........ccoevuees 357
G
(] 135, 421
GETA .o, 137, 421
GETSTR....ccvviiiiiiineenn, 136, 421
GHB3224 ... 212
GHB3224 DIP Switch........... 232
GHLCD....oevvieeieieieeae 32,212
GLAYER.........cvviennnn. 217,421
GLOCATEovvvviennann, 223,421
GMOV v 388
GOSUB.....cvuvveiriiniiieeins 138
(€10 2 1O R 138, 398
GPASTE......coiivniiiinennn, 230, 421
GPOPovviviiiiiiienn, 229, 421
GPRINT ..o 224
GPUSH......cviivieinenn, 229,421
H
...................................... 98
139, 421
143
..................................... 99
231
231,421
231,421
Hyperbolic CoS........covvvnvennenns 96
Hyperbolic Sin.........ccovevvvnenne. 96
Hyperbolic Tan........c..cceveuvenns 96
I
I/O ports .ccviniiiiiiiieceaens 36
I2C . 248
I2CREADcevvveenn. 141, 421
I2CSTART ...ovciviiieneenn, 140, 421
I2CSTOP .cvvviiiivrieeeiee 140
I2CWRITE ..ovviviiennnnn, 141, 422

430

If---Then---Elseif...Else---EndIf 142

IN 143, 422
INCR ..ot 144, 422
INPUT oo 145, 422
input-only pin........ccovvvinninnns 45
INtii 153
Integer .ooovviiiiiiiiiiees 69
Internal Relay........ccoceuvenneen. 358
interruptoooiiiii 90
INTON oo 400
K
O I D PN 381
KCTU oo 381
KEYIN...oviiinniiiiiennens 146, 422
KEYINH......oooviiniinnnn 146, 422
KEYPADccvvvvvneinnnnnnn 147,422
KTAON....ivniiiiiiiiiice e 377
KTON...iviiviiieirereei e 377
L
Label ...ooviiiiiiiieens 138
LABEL.....vvviiniiiiiinieaneas 398
LADDER LOGIC.............. 19, 340
LADDERSCAN. 148, 422
LAYER......ccvvviiieniennns 216, 422
LCD displays.........ccoveuvinninnnenn 31
left oo, 99
LEN tovviiici e 100
LIGHT i 218, 422
LINE .coviiiiiiiniceieenen 221,422
LINESTYLEccvvvevnnnenn 226, 422
LINETO ..ovvvivnviincennenn 221, 422
LN e 96
LOAD....coviiiiiiiiiiinecinen 369
LOADN.....ovivniiriiirinriisians 369
LOCATE ..ovvvvvriinniinnnn 208, 215
LOG.. it 96
[0 1 N 96
(o] o o TP 69

LOW weveeeeeeeeee e e 149, 422

LTRIM oo e 100
M
MCP3202 ...cevivveieeiieneennn, 324
MCS .o 373
MCSCLR ...ovvviieriereeeenneenen 373
Memadrcovvviveiiineeeeaas 91
MEMADRcoevvneennen. 150, 423
MENU buttons............cceeuvens 276
MENUCHECK 278, 423
MENUREVERSE 278,423
MENUSETccevvvvnennnen. 277,423
MENUTITLEc.eeneee. 277,423
MID .ovvveiiieeeeeeee e 100
MODBUSocvivveeeeneenn 404
MONItoriNgovvvvvvviiiiniinienes 348
motor driver........coovvvvenenns 317
multi-taskingcovveienninnnn. 21
N
NCD...vevviieeieieeea, 151, 423
NOP «vvviviii 152, 423
Normally Closed.................. 357
Normally Open.........ccceveunens 357
NOT e, 370
NTC thermistor 305
O
(0] 31551 =3 T 225,423
ONINT tovviviieeceieeenns 153, 423
ON LADDERINT............ 154, 423
ON PAD......ovvvevnrinannns 156, 423
ON RECV....cocvvvenvinnaenns 157, 423
ON TIMERcovvvvinnnnns 158, 423
ON-Chip c.vveiiiieiinice e, 23
OPENCOMccvvnvvnnannns 159, 424
[o] 1<) = 1 o] ¢ 80

OR ottt 370
OUT vt 161, 424
OUTPUT ..evvveviieeeeeeenns 162, 424
OUTSTAT .ciiiiiiieieeans 163, 424
OVERLAYoovvviveiinnnnn 217, 424
P
PAINT .o, 227,424
PAUSEcovvvviiviininnne, 163, 424
Peek....ooiiiiiiiiii 91
PEEK ..o 164, 424
PLC Setup Wizard 352
PLC/Micro-computer............... 24
POKE...iviiiiiii 91
POKE.....coviieiiiiiiinenenns 164, 424
power regulator............coeuvenes 37
PRINT....ccvvvvvnnenen 208, 216, 424
proto-boardscceviiiiinnnns 30
(2] = I 226, 424
PULSOUT ...covveenenneen 165, 424
PUT o 166, 424
PUTA . 168, 425
PUTSTR ..o 167, 425
PWM.. oo, 169, 425
PWMOFF.....cccvvvviinnnnen 170, 425
R
RAMCLEAR 73, 171, 425
RC Servo motor................... 319
Real Time Clock..........ccuueee. 322
re-flashedc.ccoevvviiniinnnnnn. 359
Relay Expression 355
Relay numberscccuveeee. 360
representation of numbers...... 83
RET .ottt 399
RETURNccviiiiiiiiiiiiiieneeans 138
REVERSEccvvvenneee. 172, 425
MGt e, 99
RND .o 173
RSTOUT .euiiiiiiiiieieieeeeens 371

RTU oo 264, 266
S
SBRT oviiieiiiiiicennrieee e 399
Select..Case.......ccoevvienninnnen, 174
SET DEBUGe. 175, 425
SET DISPLAYenv.e. 205, 425
SETI2C..cciiiiiiiiiiiinnns 176, 425
SET INTX euvviiieiiienanen 185, 426
SET LADDER On........... 177, 425
Set Modbusc......... 178, 425
SET ONGLOBAL............ 186, 426
SET ONINTX ..vvvennnennen 187, 426
SET ONLADDERINT 188, 426
SET ONPADcevvnee 189, 426
SET ONRECV 190, 426
SET ONTIMER............... 191, 426
Set Outonly On....ccevvvvvenennns 43
SET PAD.....ocvvveeeneeneee 180, 425
Set RS232 ...covvvvnininnnns 183, 425
SET UNTIL.....cvvninannnen 184, 426
SETOUT v 371
Seven Segment display.......... 32
Sharing Datacooevveniennns 92
SHIFTIN ..cvviiiiieieanes 192, 426
SHIFTOUT ...covvvveneennes 193, 426
SNt 96
SIN .t 36
Single oo 69
SOUNAS ..vvvvvenienneeeeneeneenens 314
15101 PR 36
special relays.........cooevennnenn 401
SQR e 96
step controlccoevvenvennennnen. 375
STEPOUT ...vvviiiieeeeieeen 376
STEPSET ..o 375
SEANG o 70
STRING(.vvnvenrennreneenrennennens 100
Study board..........cooveiinnnen. 31
STYLE o 220, 426

SYS o 194, 426
T
TADIN.....vvevrinnnns 105, 195, 427
TAN coii 96
TAOFF...coiiiiiiiieiee e 378
TAON...cctiiicire e 377
TCP i, 26
Temperatureccoeeveiinenns 305
Text Editorovvvveiiiiiiniiinnns 54
text layer size......cocevvenvennnnn 213
TIME. ..o, 196, 427
Time Chart Monitoring........... 349
TIMESET ..ceviiiieeineen 197, 427
TOFF e 378
TON. i 377
Touch Pad.......ccoeovvveiiinnenns 280
touchpad.......ccoovvviiiiiniinnns 273
Turbo Scan Time.......ccovvevnnes 363
U
UDELAYcovevnneee 199, 315, 427
UDP.eiiiiiiiceee e, 26
UP Counter......cocovivninninnnnns 379
UP/DOWN Counter............... 380
Usepinocovevneennes 200, 359, 427
UTMAX. .., 201, 427
\

VAL i 101
VALSNGccvniiiiiiiiniiineinnns 101
VAR ...t 69
LV4=] 45
W
WADD.....ctiiiiieiiniiineeineennns 390
WAITDRAWvviiiiniieneenn, 279

WSUB....ooiiiiiiiiiicineceienns 390

WXCHG ..o 386

WXOR..ciiiiiiiiieiiieiieeeeaenas 394
X

XPORT .viiiiiiiiiiiiiieeeeeeeeaans 26

XPORT internet module 310

XPORT Server......ccvcvevevnnnnnen 328

433

	Chapter 1 �CUBLOC�Getting started…
	What is CUBLOC?
	LADDER LOGIC and BASIC
	Multi-tasking of LADDER�and BASIC
	Advantages of “On-Chip” �PLC/Embedded Computer
	Development Environment
	Download and Monitoring�through the Internet
	Hints for traditional PLC User
	Hints for Micro Controller User
	CUBLOC’s Internal Structure
	CUBLOC Peripherals

	Chapter 2 �Hardware
	Hardware Features
	CB220
	Supplying power to the CB220
	CB280
	How to supply power to the CB280
	CB290
	How to connect Battery to CB290
	Dimensions
	CUBLOC Chipset : CB280CS

	Chapter 3 �CUBLOC STUDIO Editor/Compiler
	CUBLOC STUDIO Basics
	Creating BASIC
	Debugging
	Menus

	Chapter 4 �CUBLOC �BASIC Language
	CUBLOC BASIC Features
	Simple BASIC program
	Sub and Function
	Variables
	String
	About Variable Memory Space
	Arrays
	Bits and Bytes modifiers
	Constants
	Constant Arrays...
	Operators
	Expressing Numbers in Bits
	The BASIC Preprocessor
	Conditional
	To use LADDER ONLY
	To use BASIC ONLY
	Interrupt
	Pointers using Peek, Poke, �and Memadr
	Sharing Data

	Chapter 5 �CUBLOC �BASIC functions
	Math Functions
	Type Conversion
	String Functions

	Chapter 6 �CUBLOC BASIC Statements�& Library
	Adin()
	Alias
	Bcd2bin
	Bclr
	Beep
	Bfree()
	Bin2bcd
	Blen()
	Bytein()
	Byteout
	CheckBf()
	Count()
	Countreset
	Dcd
	Debug
	Decr
	Delay
	Do...Loop
	Dtzero
	Eeread()
	EAdin()
	Eewrite
	Ekeypad
	For...Next
	Freqout
	Get()
	Getstr()
	Geta
	Gosub..Return
	Goto
	High
	I2Cstart
	I2Cstop
	I2Cread()
	I2Cwrite()
	If..Then..Elseif…Endif
	In()
	Incr
	Input
	Keyin
	Keyinh
	Keypad
	Ladderscan
	Low
	Memadr()
	Ncd
	Nop
	On Int
	On Ladderint Gosub
	On Pad Gosub
	On Recv1
	On Timer()
	Opencom
	Out
	Output
	Outstat()
	Pause
	Peek()
	Poke
	Pulsout
	Put
	Putstr
	Puta
	Pwm
	Pwmoff
	Ramclear
	Reverse
	Rnd()
	Select...Case
	Set Debug
	Set I2c
	Set Ladder on/off
	Set Modbus
	Set Outonly
	Set Pad
	Set Rs232
	Set Until
	Set Int
	Set Onglobal
	Set Onint
	Set OnLadderint
	Set Onpad
	Set Onrecv
	Set Ontimer
	Shiftin()
	Shiftout
	Sys()
	Tadin()
	Time()
	Timeset
	Udelay
	Usepin
	Utmax
	WaitTx

	Chapter 7 �CUBLOC�Display Library
	Cls
	Csron
	Csroff
	Locate
	Print
	CLCD Module
	GHLCD Graphic LCD :�GHB3224 Series
	Cls
	Clear
	Csron
	Csroff
	Locate
	Print
	Layer
	GLayer
	Overlay
	Contrast
	Light
	Wmode
	Font
	Style
	Cmode
	Line
	Lineto
	Box
	Boxclear
	Boxfill
	Circle
	Circlefill
	Ellipse
	Elfill
	Glocate
	Gprint
	Dprint
	Offset
	Pset
	Color
	Linestyle
	Dotsize
	Paint
	Arc
	Defchr
	Bmp
	Gpush
	Gpop
	Gpaste
	Hpush
	Hpop
	Hpaste
	Seven Segment Display :�CSG Series
	Csgdec
	Csgnput
	Csgxput
	Csgdec
	Csghex

	Chapter 8 �Interface
	Input/Output Circuits
	RS232 HOWTO
	CuNET
	CUBLOC STUDY BOARD Circuit Diagram
	About I2C…

	Chapter 9 �MODBUS
	About MODBUS…
	Function Code 01,02 : Bit Read
	Function Code 03,04 : Word Read
	Function Code 05 : 1 Bit Write
	Function Code 06 : 1 Word Write
	Function Code 15: Multiple Bit Write
	Function Code 16 : Multiple Word Write
	Error Check
	MODBUS Master Mode (ASCII)
	MODBUS Master Mode (RTU)

	Chapter 10 �CUTOUCH
	About CUTOUCH
	CUTOUCH
	CUTOUCH Dimensions
	Menu System Library
	MENU Commands
	Menuset
	Menutitle
	Menucheck()
	Menureverse
	Menu()
	Waitdraw
	Touch Pad Input Example
	CUTOUCH I/O Ports
	Relays
	Backup Battery
	KEEP Timer and KEEP Counter

	Chapter 11 �Application Notes
	NOTE 1. Switch Input
	NOTE 2. Keypad Input
	NOTE 3. Temperature Sensor
	NOTE 4.�Connect to the Internet through XPORT
	NOTE 5. Sound Bytes
	NOTE 6.�Step Motor Pulse Generation
	NOTE 7. RC Servo Motor
	NOTE 9. DS1302 RTC
	NOTE 10.�MCP3202 12 Bit A/D Conversion
	NOTE 11.�Read and write to the EEPROM
	NOTE 12. �XPORT Server program to control multiple devices f
	MEMO

	Chapter 12 �LADDER LOGIC
	LADDER Basics
	Creating LADDER
	Editing LADDER Text
	Monitoring
	Time Chart Monitoring
	WATCH POINT
	Relay Expression
	Ladder symbols
	Using I/Os
	Use of Aliases
	Beginning of LADDER
	Declare devices to use
	To Use Ladder Only, �without BASIC
	Enable Turbo Scan Time Mode
	Things to Remember in LADDER
	ladder instructions
	LOAD,LOADN,OUT
	NOT, AND,OR
	SETOUT, RSTOUT
	DIFU, DIFD
	MCS, MCSCLR
	STEPSET
	STEPOUT
	TON, TAON
	TOFF, TAOFF
	CTU
	CTD
	UP/DOWN COUNTER
	KCTU
	KCTD
	Comparison Logic
	How to store �Words and Double Words
	Binary, Decimal, Hexadecimal
	WMOV, DWMOV
	WXCHG, DWXCHG
	FMOV
	GMOV
	WINC, DWINC, WDEC, DWDEC
	WADD, DWADD
	WSUB, DWSUB
	WMUL, DWMUL
	WDIV, DWDIV
	WOR, DWOR
	WXOR, DWXOR
	WAND, DWAND
	WROL, DWROL
	WROR, DWROR
	GOTO, LABEL
	CALLS, SBRT, RET
	INTON
	Special Relays

	APPENDIX
	Appendix A. ASCII CODE
	Appendix B.�Note for BASIC STAMP users
	Appendix C. Using Output Port on the CB290 / CT1720
	Appendix D.�CB280 Proto Board Schematics
	Appendix E.�CB290 Proto Board Schematics
	Appendix F. CB280CS
	Appendix G.�CUBLOC BASIC Command summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [216.000 360.000]
>> setpagedevice

