INNERSHIELD® WIRES

Self-Shielded, Flux-Cored Wires

About The Lincoln Electric Company

Lincoln Electric is the world's premier manufacturer of welding equipment and consumables. No company on earth is more focused on the ever-changing needs of the welding professional. Our business is all about helping companies make their welding operations more effective, more efficient, more profitable. Lincoln is truly your "One Source" when it comes to welding. We're a company that continually rededicates itself to the equally important goals of exceptional quality, and exceptional service. Our field support team - with hundreds of field sales engineers and thousands of knowledgeable and responsive Lincoln distributors in countries all over the world — is the largest in the industry. Innovative thinking. A quality and service-first attitude. Fresh approaches to design, manufacturing, and packaging. Worldwide strength. That's Lincoln Electric.

Lincoln's Innershield[®] Wire

Innershield wire by Lincoln Electric is one of the most user-friendly, convenient, versatile wires on earth. This exceptionally feedable and consistent wire includes shielding, slagging and deoxidizing materials built right in to its inner core. That means no external gas bottles or flux on the job! It's a superb choice for bridges, offshore drilling rigs, and other outside welding applications where winds are a factor.

- Shielding, slagging and deoxidizing materials are built right in to the inner core.
- No need for external gas or flux.
- Many Innershield wires to choose from a perfect wire for every application.
- One of the most user-friendly welding processes on the market today.
- A great choice for use in moderately windy conditions.
- As with all of our wires, Innershield's arc characteristics are outstanding! That's because we pay more attention to chemistry, quality of raw materials, and manufacturing processes than any wire manufacturer in the world!
- Best of all, Innershield is designed and built by Lincoln Electric. Our company is all about innovative thinking – about listening and responding to the needs of welding professionals – about finding ways to make welding quicker, stronger, and more efficient.

Advantage Lincoln

More precise control. Innershield's open arc process allows the operator to control the placement of the weld metal and the puddle with exceptional accuracy.

More consistent weld deposits. Innershield performs better because Innershield is built better. The best raw materials, The best manufacturing processes. The best quality control systems.

Versatility. No matter what welding positions your job requires, there's an Innershield wire specifically designed to handle it. We've provided individual wire descriptions in this brochure that will make it easy for you to choose the right Innershield product for your needs.

Better portability. Because Innershield is completely self-contained with shielding, slagging and deoxidizing materials built right in to the wire's core - there's no need for flux feeding systems or gas bottles. That means increased portability of your rigs, and more efficient welding operations.

Better feedability. We've coated Innershield wire with specially designed lubricants that keep the wire feeding beautifully - inch after inch, coil after coil.

Typical Applications

Innersheld wire is a great choice for a wide range of applications, including:

- Automotive
- Truck & Trailers
- Construction, Farm & Mining Equipment ٠
- Bridges ٠
- Buildings
- Storage Tanks
- Ships & Barges
- Offshore Oil Drilling Platforms ٠
- Pipelines
- Structural Fabrication •
- Maintenance & Repair

Contents	Page
Product Introduction	2-3
Electrode Selection Guide	4-5
High Speed Single Pass Welding	6-11
General Purpose Welding	.12-17
Structural Fabrication	
Welding	.18-37
Pipe Fabrication	.38-41
Agency Approvals	42
Storing Innershield Electrodes	43

Contents

INNERSHIELD® ELECTRODE SELECTION GUIDE

Electrode Name	AWS Classification	General Description	Page No.
High Speed Single Pass	Welding		
Innershield NR-1 & NR-5	E70T-3	Good for high speed flat and horizontal single pass automatic welding applications, especially circumferential welds with overlapping. Recommended for materials with a thickness not greater than 3/16" (4.8mm).	6-7
Innershield NR-131	E70T-10	For automatic and semiautomatic high speed, single pass welding on sheet metal with a thickness of .11" (2.8mm) or more. A solid performer for twin arc welding applications, especially in flat, horizontal, and automatic roundabout positions. Good deposition rates and travel speeds.	8-9
Innershield NR-152	E71T-14	Designed for high speed, single pass automatic and semiautomatic welding on materials from .030 - 3/16" (0.8 - 4.8mm). A good choice for bare, galvanized, specialty zinc-coated, Galvanneal, aluminized, or carbon steels.	10-11
General Purpose Weldin	g		
Innershield NR-202	E71T-7	Excellent for all position welding. Can make very small welds at high travel speeds. Cost-effective tacking wire than can join carbon steel with other higher strength steels.	12-13
Innershield NR-211-MP	E71T-11	Versatile wire suitable for all position welding of light gauge steel or thin plate up to 1/2" (12.7mm). Low spatter and excellent weld appearance make it a favorite with operators.	14-15
Innershield NR-212	E71TG-G	A good choice for general purpose, all position welding. Produces smooth welds with excellent appearance. Designed for single and multiple pass semiautomatic and automatic welding of mild steel, sheet metal, plate and coated steel. Low spatter level. Handles poor fit-up well.	16-17
Structural Fabrication W	'elding		
Innershield NR-203M ⁽¹⁾	E71T-8J	Use in flat, horizontal, vertical up and overhead positions on mild and low alloy steels. Good arc action and low spatter. Meets minimum Charpy V-Notch properties for seismic applications.	18-19
Innershield NR-203MP ⁽¹⁾	E71T-8J	Great for all position, single and multiple pass welding with mild steel and some low alloy steels. Handles poor fit-up on heavy wall tubes and gaps up to 3/8" (9.5mm) with 1/4" (6.4mm) offset. Meets minimum Charpy V-Notch properties for seismic applications.	20-21
Innershield NR-203 Nickel (1%) ⁽¹⁾	E71T8-Ni1	Use for all position, single and multiple pass welding on mild steel and some low alloy steels. Performs well in automatic and semiautomatic applications. Produces a nickel bearing weld deposit with Charpy V-Notch properties at low temperatures. Can weld gaps up to 3/8" (9.5mm). Meets minimum Charpy V-Notch properties for seismic applications.	22-23

⁽¹⁾ Meets minimum Charpy V-Notch properties recommended in the "Seismic Provisions for Structural Steel Buildings" by AISC, dated April 15, 1997.

INNERSHIELD[®] ELECTRODE SELECTION GUIDE

Electrode Name	AWS Classification	General Description	Page No.
Structural Fabrication	n Welding - Cont'd		
Innershield NR-203 Nickel C	E61T8-K6	Designed for single and multiple pass welding in automatic and semiautomatic applications. Good for low temperature alloys. Produces a nickel bearing weld deposit with good Charpy V-Notch properties at low temperatures.	24-25
Innershield NR-203 Ni C Plus ⁽¹⁾	E71T8-K2	Similar to NR-203 Nickel C, but with increased capability to join higher strength steels. Handles poor fit-up in the vertical up position and welds gaps up to 1/4" (6.4mm) with offsets up to 1/4" (6.4mm).	26-27
Innershield NR-232 ⁽¹⁾	E71T-8	A popular choice because of its high deposition rates with out-of-position welding. Designed for single and multiple pass welding of 3/16" (4.8mm) and heavier mild steel, as well as some low alloy steels. Self-peeling slag. Excellent Charpy V-Notch properties.	28-29
Innershield NR-305 ⁽¹⁾	E70T-6	Great for downhand welding applications where high deposition rates and good penetration are desired. Designed for use with mild steel and some low alloy steels on single and multiple pass, automatic and semiautomatic welding. Excellent operator appeal.	30-31
Innershield NR-311	E70T-7	Very high deposition rates and fast travel speeds. Welds thicker mild steels and some low alloy steels. Good bead shape and easy slag removal. Resists weld cracking.	32-33
Innershield NR-311 Ni ⁽¹⁾	E70T7-K2	Similar to NR-311, but with Charpy V-Notch properties. Designed for downhand, flat and horizontal welding on 1/8" (3.2mm) and thicker mild steel and some low alloy steels. High deposition rates and fast travel speeds. Produces a 1.5% nickel deposit for good low temperature notch toughness. Good Charpy V-Notch properties.	34-35
Innershield NS-3M	E70T-4	Extremely high deposition rate wire designed for automatic and semiautomatic welding on mild steel and some low alloy steels. Resistant to cracking on high sulfur steel and porosity on mildly rusty, oily or dirty plates. Soft, low penetrating arc.	36-37
Pipe Fabrication			
Innershield NR-207 & NR-207-H	E71T8-K6	Optimum performance on vertical down, hot, fill and cap passes on standard cross-country pipelines and arctic grade pipe. Excellent crack resistance and CTOD and Charpy V-Notch properties. Meets API Pipe Grade X42 and X70 requirements.	38-39
Innershield NR-208-H	E91T8-G	Similar to NR-207-H, but with lower hydrogen and higher strength. Produces weld deposits exceeding 80,000 psi yield strength with excellent low temperature impacts. Meets API Pipe Grade X80 requirements.	40-41

⁽¹⁾ Meets minimum Charpy V-Notch properties recommended in the "Seismic Provisions for Structural Steel Buildings" by AISC, dated April 15, 1997.

Great choices for flat and horizontal single pass automatic welds on sheet metal with a thickness of 3/16" (4.8mm) or less.

Both electrodes are built to perform in high speed automatic welding applications. NR-1 is especially designed for circumferential welds where the weld's finish overlaps its start.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Designed for high travel speeds up to 170 inches (4.3m) per minute.

 Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

NR-1

• Straight welds.

- Roundabouts that overlap the start.
- Through welds on material up to 12 gauge.
- Joints susceptible to slag trapping.

NR-5

- 3-o'clock position welds.
- Can also be used for welds that require 100% penetration with copper back-up.
- NR-5 (3/32") diameter can slso be used in semiautomatic applications.

NOTES:

- NR-1 and NR-5 are not recommended for welding steel that is more than 3/16" (4.8mm) thick.
- NR-1 and NR-5 are also not recommended for welding that requires multiple passes.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E70T-3 ASME SFA-5.20: E70T-3

DIAMETERS / PACKAGING

Diameter Inches (mm)		600 Lb. Speed Feed® Drum	600 Lb. Speed Feed Reel
NR-1 .120 5/32	(3.0) (4.0)	EDS12150 EDS12153	
NR-5 3/32 .120	(2.4) (3.0)	ED012699 ED012696	ED012701 ED012698

MECHANICAL PROPERTIES - As Welded per AWS A5.20

	Transverse Tensile Strength psi (MPa)	Longitudinal Bend Test	Hardness Rockwell B
Requirements AWS E70T-3	70,000 (480) min.	180° over 3/4" Radius No openings exceeding 1/8"	
Test Results Typical NR-1	72,000 - 79,000 (496 - 545)	Passed	95
Test Results Typical NR-5	73,000 - 81,000 (503 - 558)	Passed	99

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.120" NR-1 DC+ 1-1/4" (32mm) 2.63 lbs/1000"	160(4.1)200(5.1)240(6.1)295(7.5)320(8.1)	21 - 22 22 - 23 23 - 24 24 - 25 25 - 26	500 610 700 810 850	25.2 (11.4) 31.6 (14.3) 37.9 (17.2) 46.5 (21.1) 50.5 (23.0)	22.0 (10.0) 28.0 (12.7) 33.0 (15.0) 40.0 (18.1) 43.0 (19.5)	87 89 87 86 85
5/32" NR-1 DC+ 1-1/8 – 1-3/8" (28-35mm) 4.07 lbs/1000"	100(2.5)110(2.8)130(3.3)150(3.8)180(4.6)	21 - 22 22 - 23 23 - 24 24 - 25 25 - 26	630 680 780 860 960	24.0 (10.9) 26.4 (12.1) 31.2 (14.2) 36.0 (16.3) 43.2 (20.1)	19.2(8.7)21.2(9.6)25.4(11.5)29.5(13.4)35.7(16.2)	80 80 81 82 83
3/32" NR-5 DC+ 1" (25mm) 1.60 lbs/1000"	100(2.5)150(3.8)200(5.1)250(6.4)	22 - 23 23 - 24 24 - 25 25 - 26	500 435 510 575	9.9 (4.5) 14.8 (6.7) 19.8 (9.0) 24.7 (11.2)	7.8(3.5)12.3(5.6)16.9(7.7)21.4(9.7)	77 83 85 87
.120" NR-5 DC+ 1" (25mm) 2.46 lbs/1000"	130 (3.3) 165 (4.2) 205 (6.5) 255 (6.5)	22 - 23 23 - 24 24 - 25 25 - 26	500 600 700 800	18.0 (8.2) 23.0 (10.4) 28.5 (12.9) 35.5 (16.1)	16.7 (7.6) 20.9 (9.5) 25.6 (11.6) 31.5 (14.3)	93 91 90 90

NOTE: Because of the exceptionally high arc speeds, welding parameters, joint positioning, and electrode wire placement critically affect the weld results, publication C3.2410 should be consulted for important variables that must be controlled for depositing consistently acceptable welds of NR-1. These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI	%Ti
Requirements AWS E70T-3 per A5.20			No	t Required			
Test Results ⁰ NR-1	.21	1.30	.007	.014	.59	.03	.15
Test Results ⁽¹⁾ NR-5	.19	.88	.006	.017	.33	.08	.33

⁽¹⁾ Chemistry of single pass welds is highly dependent upon base metal chemistry and dilution. Analysis shown are for information purposes only.

Use NR-131 Innershield wire for automatic and semiautomatic high speed, single pass welds on sheet metal with a thickness of .11" (2.7mm) or more.

Designed to perform well in twin-arc welding applications, especially in flat, horizontal, and automatic roundabout positions.

A constant voltage power source is recommneded.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Excellent deposition rates.
- High travel speeds.
- A great choice for welds that join light steel to heavier members.

 Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

Single Arc:

• 1/8" (3.2mm) and 3/16" (4.8mm) fillet welds with travel speeds up to 75 in/min (1.9 m/min).

Twin Arc:

- 1/4" (6.4mm) and 5/16" (8.0mm) fillet welds with travel speeds up to 75 in/min (1.9 m/min).
- An excellent performer on fillets and laps. NR-131 is also a good choice for corner, edge and butt joints.

NOTES:

• NR-131 should not be used for applications requiring Charpy V-Notch properties.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E70T-10 ABS: E70T-10

DIAMETERS / PACKAGING

Diameter Inches (mm)		50 Lb. Coil	600 Lb. Speed Feed◎ Reel	600 Lb. Speed Feed Drum
NR-13 3/32	31 (2.4)	EDS12162	ED012163	

MECHANICAL PROPERTIES - As Welded per AWS A5.20

	Transverse Tensile Strength psi (MPa)	Longitudinal Bend Test	Hardness Rockwell B
Requirements AWS E70T-10	70,000 (480) min.	180° over 3/4" Radius No opening exceeding 1/8"	
Test Results	73,000 - 82,000 (503 - 565)	Passed	90

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
3/30"	150 (3.8)	25 - 26	390	14.3 (6.5)	11.6 (5.3)	81
Single Arc. DC-	200 (5.1)	25 - 27	490	19.0 (8.6)	15.6 (7.1)	82
$1_{-1/4"}$ (32mm)	250 (6.4)	26 - 27	570	23.7 (10.8)	19.6 (8.9)	82
1-1/4 (5211111) 1.590 lbs/1000"	350 (8.9)	26 - 28	720	33.1 (15.0)	27.6 (12.5)	83
1.560 IDS/1000	425 (10.8)	27 - 28	810	40.1 (18.2)	33.6 (15.2)	83
2/20"	130 (3.3)	25 - 26	550	24.5 (11.1)	17.9 (8.1)	72
JJJZ Twippro DC	175 (4.4)	26 - 27	740	33.0 (15.0)	26.4 (12.0)	79
$1 \frac{1}{2}$ (29mm)	225 (5.7)	26 - 28	910	42.5 (19.3)	34.8 (15.8)	81
1-1/2 (Sol1111)	275 (7.0)	27 - 29	1030	51.9 (23.5)	42.0 (19.1)	80
	325 (8.3)	28 - 30	1090	61.4 (27.9)	48.2 (21.9)	78

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E70T-10 per A5.20	.23	.45	/006	.004	.25	1.17
Test Results ⁽¹⁾	.252	.53	.008	.009	.21	1.55

⁽¹⁾ Chemistry of single pass welds is highly dependent upon base metal chemistry and dilution. Analysis shown are for information purposes only.

NOTE: NR-131 will not produce weld deposits meeting the minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203 Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

NR-152 is an excellent wire for automatic and semiautomatic welding on steels including bare, galvanized, specialty zinc-coated, Galvanneal^{®(1)}, aluminized, or carbon.

Designed for high speed, single pass welding on materials from .030" to 3/16" (1.2mm - 4.8mm).

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- A great choice for coated steels.
- NR-152's exceptionally soft arc means less burnthrough on thin gauge materials.
- An operator favorite!

- Excellent overlapping capabilities. Use NR-152 for roundabouts, or to repair itself.
- Fast, sure restarts with no end clipping necessary.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Spot or stitch welds up to .030" (0.8mm) thick sheet metal.
- Continuous welds on .048" (1.2mm) in a travel speed range of 40-60 in/min (1.0-1.5m/min).
- Continuous welds on coated steels in a travel range of 30-40 in/min (0.7-1.0 m/min).

NOTES:

- NR-152 should not be used for applications requiring Charpy V-Notch properties.
- The preferred drag angle is 15°. However, NR-152 is capable of welding at zero drag angle, facilitating easy fixturing in automatic applications.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E71T-14

DIAMETERS / PACKAGING

Diame Inches	eter s (mm)	25 Lb. Spool	50 Lb. Coil	500 Lb Speed Feed® Drum	600 Lb. Speed Feed Drum	600 Lb. Speed Feed Reel
.045 .052 .062 .068 5/64	(1.1) (1.3) (1.6) (1.7) (2.0)	EDS01702 EDS01703 EDS01021	ED012185 ED012186 EDS12187	ED024301 ED019580	ED024265	ED019579

MECHANICAL PROPERTIES - As Welded per AWS A5.20

	Transverse Tensile Strength psi (MPa)	Longitudinal Bend Test	Hardness Rockwell B
Requirements AWS E71T-14	72,000 (497) min.	180° over 3/4" Radius No opening exceeding 1/8"	
Test Results	72,000 - 82,000 (496 - 565)	Passed	93

(1) Galvanneal is a registered trademark of Keystone Consolidated Industries, Inc., Peoria, IL.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.045" DC- 3/8" (10mm) .392 lbs/1000"	60 (1.5) 90 (2.3) 120 (3.0) 150 (3.8)	15 - 16 16 - 17 17 - 18 18 - 19	95 135 160 180	1.3(0.5)2.1(0.9)2.8(1.2)3.4(1.5)	1.1 (0.5) 1.8 (0.8) 2.5 (1.1) 3.1 (1.4)	84 85 89 91
.052" DC- 3/8" (10mm) .500 lbs/1000"	55 (1.4) 90 (2.3) 110 (2.8) 130 (3.3)	16 - 17 17 - 18 18 - 19 19 - 20	100 150 170 190	1.7 (0.7) 2.6 (1.1) 3.5 (1.5) 3.8 (1.7)	1.6 (0.7) 2.4 (1.1) 2.9 (1.3) 3.5 (1.6)	94 92 82 92
.062" DC- 3/8" (10mm) .736 lbs/1000"	30 (0.8) 40 (1.0) 50 (1.3) 70 (1.8) 110 (2.8)	13 - 14 14 - 15 15 - 16 16.5 - 17.5 19 - 20	90 115 140 185 265	1.3(0.5)1.8(0.8)2.2(0.9)3.1(1.4)4.8(2.1)	1.2(0.5)1.6(0.7)2.0(0.9)2.8(1.3)4.4(2.0)	92 88 90 90 91
.068" DC- 1/2" (13mm) .910 lbs/1000"	30 (0.8) 40 (1.0) 50 (1.3) 60 (1.5) 80 (2.0) 110 (2.8)	13 - 14 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.5 - 17.5 20 - 21	68 95 120 145 190 240	1.6(0.7)2.2(0.9)2.7(1.2)3.3(1.4)4.4(1.9)6.0(2.7)	1.4 (0.6) 1.9 (0.9) 2.4 (1.1) 2.9 (1.3) 3.9 (1.8) 5.4 (2.4)	87 86 88 87 88 90
5/64" DC- 3/4" (19mm) 1.15 lbs/1000"	40 (1.0) 70 (1.8) 80 (2.0) 100 (2.5) 125 (3.2)	16 - 17 18 - 19 19 - 20 21 - 22 24 - 25	125 230 260 310 355	2.8 (1.2) 4.8 (2.1) 5.5 (2.4) 6.9 (3.1) 8.6 (3.9)	2.5 (1.1) 4.3 (1.9) 4.9 (2.2) 6.1 (2.7) 7.6 (3.4)	89 89 89 88 88

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E71T-14 per A5.20			Not Required	1		
Test Results ⁽¹⁾ .062 .068	.30 .30 26	.99 .91 82	.013 .009 .008	.007 .011 .015	.24 .25 21	1.63 1.55 1.07

⁽¹⁾ Chemistry of single pass welds is highly dependent upon base metal chemistry and dilution. Analysis shown are for information purposes only.

Innershield NR-202 is a cost-effective wire that produces consistently good looking weld beads.

Designed for semiautomatic welding.

An excellent tacking wire.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- A great wire to use when cost is a primary issue, and no impact properties are required.

 Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Structural fabrication where no seismic requirements are present.
- Vertical and overhead plate welding.
- Fabrication of machinery parts and hoppers.
- Short assembly welds on brackets and clips.
- Roundabout groove welds.

NOTES:

• NR-202 should not be used for applications requiring Charpy V-Notch properties.

DIAMETERS / PACKAGING

Diame	eter	14 Lb.	50 Lb.	
Inches	s (mm)	Coil	Coil	
5/64	(2.0)	ED012287	ED012288	

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength	Tensile Strength	Elongation	Hardness
	psi (MPa)	psi (MPa)	(%)	Rockwell B
Requirements	58,000 (400)	70,000 (480)	22	
AWS E71T-7	min.	min.	min.	
Test Results	60,000 - 75,000 (414 - 517)	72,000 - 95,000 (497 - 655)	22 - 27	87 - 93

⁽¹⁾The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

WELDING POSITIONS

- Smaller diameter wires are generally used for out-of-position.
- Larger diameter wires are generally used for flat and horizontal welding.

CONFORMANCE

AWS A5.20-95: E71T-7 ABS: E71T-7

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.068" DC- 1" (25mm) .842 lbs/1000"	55 (1.4) 100 (2.5) 150 (3.8) 175 (4.4) 210 (5.3)	19 - 20 20 - 21 21 - 22 22 - 23 23 - 24	130 190 245 270 300	2.8 (1.3) 5.0 (2.3) 7.6 (3.4) 8.8 (4.0) 10.6 (4.8)	1.7 (0.8) 3.7 (1.7) 6.0 (2.7) 7.1 (3.2) 8.7 (3.9)	61 74 79 81 82
5/64" DC- 1" (25mm) 1.09 lbs/1000"	50 (1.3) 100 (2.5) 150 (3.8) 175 (4.4) 200 (5.1) 230 (5.8)	19 - 20 20 - 21 21 - 22 22 - 23 22 - 23 23 - 24	150 235 305 335 365 400	3.4 (1.5) 6.8 (3.1) 10.2 (4.6) 11.9 (5.4) 13.6 (6.2) 15.7 (7.1)	2.0 (0.9) 5.1 (2.3) 8.3 (3.8) 9.9 (4.5) 11.4 (5.2) 13.3 (6.0)	59 75 81 83 84 85

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E71T-7 per A5.20-95	Report Only	1.75 max.	.03 max.	.03 max.	.60 max.	1.80 max.
Test Results	.19	.72	.007	.003	.20	1.34

NOTE: NR-202 will not produce weld deposits meeting the minimum Charpy V-Notch properties recommended in the "Seismic Provisions for Structural Steel Buildings" by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203 Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

One of our most popular all-purpose Innershield wires.

A terrific choice for light gauge steel or thin plate. Performs well on coated steels.

Restricted to 1/2" (12.7mm) maximum plate thickness for .068, 5/64" and 3/32" diameters, and 5/16" (7.9mm) maximum plate thickness for .035 and .045 diameters.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- An extremely popular wire with excellent operator appeal, low spatter, and good weld appearance.
- NR-211-MP is an extremely versatile wire – suitable for all position welding.

DIAMETERS / PACKAGING

- A good choice when poor fitup is an issue.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Single or multiple pass welding.
- Structural fabrication where no seismic requirements are present.
- Robotic welding applications.
- Fabrication and repair of machinery parts, trucks, auto bodies, saddles, tanks and hoppers.
- Welding on racks, scaffolding, light angle structurals, joists, and small roundabout applications.

NOTES:

 NR-211-MP should not be used for applications requiring Charpy V-Notch properties.

RECOMMENDED MAXIMUM PLATE THICKNESS

Diameter Max. Plate Inches (mm) Thickness						
.035 & .045	5/16"					
(0.9 & 1.1)	(7.9mm)					
.068, 5/64, & 3/3	2 1/2"					
(1.7, 2.0 & 2.4)	(12.7mm)					

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E71T-11 ASME SFA-5.20: E71T-11 ABS: E71T-11 (.068 - 3/32" only) CWB: E4801T-11-CH

Dia Inc	ameter hes (mi	m)	1 Lb Spool	10 Lb Spool	14 Lb Coil	25 Lb Readi-Reel®	50 Lb Coil	50 Lb. Readi-Reel	300 Lb. Speed-Feed Reel	600 Lb Speed-Feed [◎] Reel
.03	5 (0.	9)	ED027641	ED016354		ED016364				
.04	5 (1.	1)		ED016363		ED016365		EDS01040	EDS01522	
.06	8 (1.	7)			ED012506	ED017827	ED012507			
5/6	64 (2.	0)			ED012508	ED017828	ED012509			
3/3	32 (2.	4)					ED013869			EDS14358

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength	Tensile Strength	Elongation	Hardness
	psi (MPa)	psi (MPa)	(%)	Rockwell B
Requirements	58,000 (400)	70,000 (480)	20	
E71T-11	min.	min.	min.	
Test Results Typical NR-211MP	58,000 - 69,000 (400- 476)	72,000 - 95,000 (497 - 655)	22 - 25	85 - 95

⁽¹⁾The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Sp in/min	Feed eed (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Mel Ra Ibs/hr	t-Off ate (kg/hr)	Depo R Ibs/hr	osition ate (kg/hr)	Efficiency (%)
.035"	50	(1.3)	14 - 15	30	0.8	(0.4)	0.7	(0.3)	81
DC-	70	(1.8)	15 - 16	60	1.2	(0.5)	1.0	(0.5)	83
3/8" (10mm)	90	(2.3)	16 - 17	90	1.7	(0.8)	1.4	(0.6)	82
.250 lbs/1000"	110	(2.8)	16.5 - 17.5	120	2.1	(1.0)	1.7	(0.8)	81
.045"	70	(1.8)	15 - 16	120	1.6	(0.7)	1.1	(0.5)	69
DC-	90	(2.3)	16 - 17	140	2.2	(1.0)	1.7	(0.8)	77
3/8" (10mm)	110	(2.8)	17 - 18	160	2.7	(1.2)	2.3	(1.0)	85
.393 lbs/1000"	130	(3.3)	18 - 19	170	3.2	(1.5)	2.7	(1.2)	84
.068"	40	(1.0)	15 - 16	125	2.1	(1.0)	1.7	(0.8)	81
DC-	75	(1.9)	18 - 19	190	4.0	(1.8)	3.4	(1.5)	85
1/2 - 1" (13 - 25mm)	130	(3.3)	20 - 21	270	7.0	(3.2)	6.1	(2.8)	88
.889 lbs/1000"	175	(4.4)	23 - 24	300	9.4	(4.3)	8.4	(3.8)	89
5/64"	50	(1.3)	16 - 17	180	3.5	(1.6)	2.9	(1.3)	83
DC-	75	(1.9)	18 - 19	235	5.3	(2.4)	4.5	(2.0)	85
1/2 - 1" (13 - 25mm)	120	(3.0)	20 - 21	290	8.4	(3.8)	7.4	(3.4)	88
1.17 lbs/1000"	160	(4.1)	22 - 23	325	11.2	(5.1)	10.0	(4.5)	89
3/32"	50	(1.3)	16 - 17	245	5.0	(2.3)	4.2	(1.9)	84
DC-	75	(1.9)	19 - 20	305	7.5	(3.4)	6.4	(2.9)	85
1/2 - 1" (13 - 25mm)	100	(2.5)	20 - 21	365	10.0	(4.5)	8.7	(3.9)	87
1.66 lbs/1000"	130	(3.3)	22 - 23	400	12.9	(5.9)	11.3	(5.1)	88 /

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E71T-11 per A5.20	Report Only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results (.068, 5/64, 3/32) (.035 & .045)	.2130 .21	.4565 .5075	.005012 .003010	.003010 .001008	.1025 .1025	1.20 - 1.80 1.20 - 1.80

NOTE: NR-211MP will not produce weld deposits meeting the minimum Charpy V-Notch impact properties recommended in the "*Seismic Provisions for Structural Steel Buildings*" by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

An excellent general purpose, all position wire for automatic and semiautomatic applications.

Designed for single and multiple pass welding on mild steel, sheet metal and plate. Also performs well on coated steel.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- A good choice when poor fitup is an issue.
- NR-212 is an extremely versatile wire. Weld in any position, on a wide range of materials including coated steel. Not recommended for vertical up.
- Alternative to NR-211-MP when thicker applications are involved.

 Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Single or multiple pass, all position welding on materials 1.1mm and thicker.
- Can be used on weathering steels where a color match is important.
- Structural fabrication where no seismic requirements are present.
- Short assembly welds.
- · Coated steel welds.
- Fabrication and repair of truck bodies, tanks, hoppers, racks, scaffolding and light angle structurals.
- Robotic applications.

NOTES:

 NR-212 should not be used for applications requiring Charpy V-Notch properties.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E71TG-G ASME SFA-5.29: E71TG-G

DIAMETERS / PACKAGING

Diame Inches	Diameter Inches (mm)		14 Lb. Coil	25 Lb. Readi-Reel®	50 Lb. Coil
.045	(1.1)	ED026090		ED026091	
.068	(1.7)		ED027803	ED026859	ED026861
5/64	(2.0)		ED027794	ED026860	ED026858
3/32	(2.4)	(See your local L	incoln Represent	ative for packaging	information for 3/32" .)

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

	Yield Strength	Tensile Strength	Elongation
	psi (MPa)	psi (MPa)	(%)
Requirements	58,000 (400)	70,000 - 90,000	20
AWS E71TG-G	min.	(480 - 620) min.	min.
Test Results Typical NR-212	67,500 (465)	86,200 (594)	27

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.29-80. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Sp in/min	Feed eed (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Depositior Rate Ibs/hr (kg/h	n Efficiency r) (%)
	55	(1.4)	14 - 15	75	1.3 (0.6)	1.1 (0.5)	84
.045"	70	(1.8)	15 - 16	90	1.6 (0.7)	1.4 (0.6)	87
DC-	90	(2.3)	16 - 17	115	2.1 (0.9)	1.8 (0.8)	85
3/8" (10mm)	110	(2.8)	17 - 18	135	2.6 (1.2)	2.2 (1.0)	84
.393 lbs/1000"	130	(3.3)	18 - 19	155	3.1 (1.4)	2.6 (1.2)	83
	150	(3.8)	19 - 20	170	3.5 (1.6)	3.0 (1.4)	85
	60	(1.5)	16 - 17	145	3.1 (1.4)	2.4 (1.1)	77
.068"	75	(1.9)	18 - 19	180	3.8 (1.7)	3.2 (1.4)	84
DC-	90	(2.3)	19 - 20	200	4.5 (2.0)	3.8 (1.7)	84
3/4" (19mm)	120	(3.0)	20 - 21	230	6.0 (2.7)	5.2 (2.3)	86.
820 lbs/1000"	150	(3.8)	21 - 22	255	7.4 (3.3)	6.4 (2.9)	86
	175	(4.4)	22 - 23	275	8.7 (3.9)	7.5 (3.4)	86
	60	(1.5)	16 - 17	200	3.8 (1.7)	3.3 (1.5)	86
5/64"	75	(1.9)	18 - 19	225	4.7 (2.1)	4.1 (1.8)	87
DC-	90	(2.3)	19 - 20	245	5.7 (2.6)	5.0 (2.3)	87
3/4" (19mm)	110	(2.8)	20 - 21	275	7.1 (3.2)	6.2 (2.8)	87
1.064 lbs/1000"	130	(3.3)	21 - 22	300	8.3 (3.7)	7.3 (3.3)	87
	150	(3.8)	22 - 23	325	9.6 (4.3)	8.4 (3.8)	87
3/32"	75	(1.9)	19 - 20	270	7.3 (3.3)	6.2 (2.8)	84
DC-	100	(2.5)	21 - 22	330	9.8 (4.4)	8.5 (3.8)	86
1" (25mm)	125	(3.2)	23 - 24	375	12.3 (5.5)	10.7 (4.8)	86
1.583 lbs/1000"	150	(3.8)	25 - 26	420	14.9 (6.7)	12.6 (5.7)	84

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn*	%P	%S	%Si*	%AI	%Ni*
Requirements AWS E71TG-G per A5.29	Report Only	1.75 min.	.04 max.	.03 max.	.80 max.	1.8 max.	.50 max.
Test Results	.10	.97	.007	.003	.31	1.52	1.10

NOTE: In order to meet the alloy requirements of the G group, the weld deposit needs to have the minimum, as specified in the table, of only one of the elements marked with an asterisk.

NOTE: NR-212 will not produce weld deposits meeting the minimum Charpy V-Notch impact properties recommended in the "*Seismic Provisions for Structural Steel Buildings*" by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203 Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

Designed for flat, horizontal, vertical up and overhead position welding.

A good choice for automatic and semiautomatic applications. Performs well on mild steel and some low alloy steels.

Meets Charpy V-Notch properties.⁽¹⁾

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Easy slag removal.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- General plate fabrication, including bridge construction, hull plate and stiffener welding on ships and barges.
- Fabrication of storage tanks.
- A good fast freeze electrode for vertical up and overhead welding. (We recommend the use of NR-203MP where vertical down is necesary.)
- Performs well on out-of-position groove welds – especially on large diameter, heavy wall tubular construction.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

CONFORMANCE

AWS A5.20-95: E71T-8 & E71T-8J ASME SFA-5.20: E71T-8 & E71T-8J ABS: 3SA-3YSA Lloyd's: 3S-3YS CWB: E4801T-8-CH

WELDING POSITIONS

DIAMETERS / PACKAGING

Diame	eter	14 Lb	50 Lb		
Inches	s (mm)	Coil	Coil		
5/64 3/32	(2.0) (2.4)	ED012295	ED012296 ED012294		

MECHANICAL PROPERTIES⁽²⁾ - As Welded per AWS A5.20

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy ft-lbs @ -20°F (-29°C)	v V-Notch s (Joules) @ -40°F (-40°C)	Hardness Rockwell B
Requirements AWS E71T-8	58,000 (400) min.	70,000 (480) min.	22 min.	20 (27) min.		
AWS E71T-8J	58,000 (400) min.	70,000 (480) min.	22 min.		20 (27) min.	
Test Results	60,000 - 69,000 (414 - 476)	72,000 - 83,000 (496 - 572)	22 - 30	120 - 160 (161 - 215)	130 -150 (175 - 201)	86
Stress Relieved ⁽³⁾	53,000 - 55,000 (365 - 379)	68,000 - 70,000 (469 - 480)	28 - 31	75 - 120 (102 - 163))

⁽²⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

⁽³⁾ Stress relieved 1 hour at 1150°F (621°C).

Wire, Polarity Electrical Stickout Wire Weight	Wire Sp in/min	Feed beed (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Mel Ra Ibs/hr	t-Off ate (kg/hr)	Depo R Ibs/hr	osition ate ′ (kg/hr)	Efficiency (%)
5/64"	50	(1.3)	16 - 17	145	3.2	(1.5)	2.5	(1.1)	78
DC-	70	(1.8)	17 - 18	180	4.5	(2.0)	3.4	(1.5)	76
3/4" (19mm)	90	(2.3)	18 - 19	220	5.8	(2.6)	4.4	(2.0)	76
1.07 lbs/1000"	140	(3.6)	21 - 22	300	9.0	(4.1)	6.7	(3.0)	74
3/32"	50	(1.3)	16 - 17	200	4.7	(2.1)	3.5	(1.6)	74
DC-	95	(2.4)	20 - 21	310	8.9	(4.0)	6.7	(3.0)	75
3/4" (19mm)	110	(2.8)	21 - 22	330	10.3	(4.7)	7.8	(3.5)	76
1.56 lbs/1000"	120	(3.0)	22 - 23	350	11.2	(5.1)	8.8	(3.9)	79

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E71T-8 per A5.20	Report only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results	.08	1.50	.010	.005	.25	.80

RADIOGRAPHIC GUIDELINES

The opacity of NR-203M slag to x-ray is such that slag inclusions will normally appear lighter than the weld. Voids will normally appear darker than the weld. When using gamma-radiography, slag inclusions and voids will normally appear darker than the weld. Improved x-ray film readability usually can be obtained by slight over-exposure at an excitation potential consistent with good x-ray practice, but not over 240 KV. For detailed information on welding techniques, procedure adjustments, and their effects on weld appearance and quality, request publication C3.2400 "Innershield Electrode - Semiautomatic Production Welding Guide".

Designed for all position, single and multiple pass welding including vertical down.

Performs well in automatic and semiautomatic applications. Appropriate for use on mild steel and some low alloy steels.

A constant voltage power source is recommended.

Meets Charpy V-Notch properties⁽¹⁾.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Fast freezing slag system facilitates all position welding, including vertical down.
- Handles poor fit-up on heavy wall tubes. Gaps up to 3/8" (9.5mm) with 1/4" (6.35mm) offset are weld-able with NR-203MP.

- Makes root beads in groove welds without backup bars.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- General plate fabrication, including bridge construction, hull plate and stiffener welding on ships and barges.
- Fabrication of storage tanks.
- Structural fabrication, including applications involving seismic requirements⁽¹⁾.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E71T-8J ASME SFA-5.20: E71T-8J ABS: 3SA-3YSAH15 Lloyd's: 3S-3YH15 DNV: III YMSH15 GL: 3YSH15 BV: SA3YMH NK: KSW53NH10

DIAMETERS / PACKAGING

Diame	Diameter 1		14 Lb	22 Lb	50 Lb
Inches	Inches (mm) S		Coil	Readi-Reel®	Coil
.040 .068 5/64 3/32	(1.0) ⁽¹⁾ (1.7) (2.0) (2.4)	EDS25039	ED025041 ED021604	ED025040	

⁽¹⁾ Manufactured in metric diameter, U.S. customary size approximate.

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy V ft-Ibs (J @ -20°F (-29°C)	/-Notch oules) @-40°F (-40°C)	Hardness Rockwell B
Requirements AWS E71T-8J	58,000 (400) min.	70,000 (480) min.	22 min.	20 (27) min.	Not Specified	
Test Results Typical NR-203MP	60,000 - 65,000 (414 - 448)	72,000 - 80,000 (496 - 552)	28 - 31	50 - 200 (68 - 271)	66 (90)	82 - 92

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
068"	70 (1.8)	16 - 17	145	3.3 (1.5)	2.3 (1.0)	69
.000 DC-	90 (2.3)	18 - 19	180	4.2 (1.9)	3.2 (1.5)	76
2/4" (10mm)	120 (3.0)	20 - 21	225	5.6 (2.5)	4.3 (2.0)	76
782 lbs/1000"	140 (3.5)	21 - 22	255	6.4 (2.9)	4.8 (2.2)	75
.782 IDS/1000	150 (3.8)	23 - 24	265	6.8 (3.1)	5.1 (2.3)	75
	50 (1.3)	16 - 17	130	3.1 (1.4)	1.9 (0.9)	61
5/64"	70 (1.8)	18 - 19	180	4.3 (2.0)	2.9 (1.3)	67
DC-	90 (2.3)	19 - 20	220	5.6 (2.5)	4.2 (1.9)	75
3/4" (19mm)	110 (2.8)	20 - 21	260	6.8 (3.1)	5.3 (2.4)	77
1.032 lbs/1000"	120 (3.0)	21 - 22	280	7.4 (3.4)	5.9 (2.7)	79
	140 (3.6)	22 - 23	310	8.7 (3.9)	6.8 (3.1)	78
0./00."	50 (1.3)	18 - 19	210	4.4 (2.0)	3.3 (1.5)	75
3/32	70 (1.8)	19 - 20	260	6.2 (2.8)	4.8 (2.2)	77
DU^{-}	95 (2.4)	21 - 22	320	8.4 (3.8)	6.6 (3.0)	78
3/4 (19mm) 1.46 lba/1000"	110 (2.8)	22 - 23	350	9.7 (4.4)	7.7 (3.5)	79
	130 (3.3)	23 - 24	390	11.4 (5.2)	9.1 (4.1)	79

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%Al
Requirements AWS E71T-8J per A5.20	Report only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results	.075	1.45	<.010	<.003	.33	.80

RADIOGRAPHIC GUIDELINES

The opacity of NR-203MP slag to x-ray is such that slag inclusions will normally appear lighter than the weld. Voids will normally appear darker than the weld. When using gamma-radiography, slag inclusions and voids will normally appear darker than the weld. Improved x-ray film readability usually can be obtained by slight over-exposure at an excitation potential consistent with good x-ray practice, but not over 240 KV. For detailed information on welding techniques, procedure adjustments, and their effects on weld appearance and quality, request publication C3.2400 "Innershield Electrode - Semiautomatic Production Welding Guide".

Designed for all position, single and multiple pass welding including vertical down on mild steel and some low alloy steels. Performs well in automatic and semiautomatic applications.

Produces a nickel bearing weld deposit with good Charpy V-Notch properties at low temperatures⁽¹⁾.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Produces a nickel weld deposit (.80 1.1% Ni).
- Handles poor fit-up in the vertical up position. Welds gaps up to 3/8" (9.5mm).

- Makes root beads in groove welds without backup bars.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Roundabout groove welds on heavy wall tubular construction
- Offshore welding applications.
- A good choice for use on weathering steels where color match is important.
- Bridges and other outdoor structural components with weathering steel.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

DIAMETERS / PACKAGING

Diameter	r	14 Lb Coil	50 Lb			
Inches (r	nm)	(56 Lb. Carton)	Coil			
5/64 (;	2.0)	ED012385	ED012386			
3/32 (;	2.4)	ED012383	ED012384			

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy V-Notch ft-lbs (Joules) @ -20°F (-29°C) @ -40°F (-40°C)		
Requirements AWS E71T8-Ni1	58,000 min. (400)	70,000 - 90,000 (483 - 620)	20 min.	20 (27) min.	Not Specified	
Test Results	66,000 - 75,000 (455 - 517)	72,000 - 85,000 (496 - 585)	20 - 30	24 - 111 (33 - 151)	42 - 87 (57 - 118)	
Stress-Relieved ⁽²⁾	61,000 - 70,000 (421 - 483)	67,000 - 74,000 (462 - 510)	27 - 30	70 - 99 (95 - 134)		

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.29-80. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

⁽²⁾ Stress relieved 1 hour at 1150°F (621°C).

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E71T8-Ni1 ASME SFA-5.29: E71T8-Ni1 ABS: 3SA-3YSA Lloyd's: 3S-3YSH15 DNV: III YMSH15

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
5/64" DC- 3/4" (19mm) 1.015 lbs/1000"	50 (1.3) 70 (1.8) 90 (2.3) 110 (2.8) 120 (3.1)	16 - 17 18 - 19 19 - 20 20 - 21 21 - 22	145 195 240 275 290	3.0 (1.4) 4.3 (2.0) 5.5 (2.5) 6.7 (3.0) 7.3 (3.3) 2.5 (2.0)	2.3 (1.0) 3.3 (1.5) 4.3 (2.0) 5.3 (2.4) 5.8 (2.6)	76 76 78 79 79
3/32" DC- 3/4" (19mm) 1.518 lbs/1000"	50 (1.3) 70 (1.8) 95 (2.4) 110 (2.8) 130 (3.3)	18 - 19 19 - 20 21 - 22 22 - 23 23 - 24	215 260 315 345 385	4.6 (2.1) 6.4 (2.9) 8.7 (3.9) 10.0 (4.5) 11.8 (5.4)	3.6 (1.6) 5.1 (2.3) 7.0 (3.2) 8.1 (3.7) 9.6 (4.4)	78 79 80 81 81

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%Ni	%P	%S	%Si	%AI	%V	%Cr	%Mo
Requirements AWS E71T8-Ni1 per A5.29	0.12 max.	1.50 max.	.80 - 1.10	0.03 max.	0.03 max.	0.80 max.	1.8 max.	0.05 max.	0.15 max.	0.35 max.
Test Results	.081	1.17	.96	.006	.003	.27	.88	<.01	.03	.02

RADIOGRAPHIC GUIDELINES

The opacity of NR-203 Nickel (1%) slag to x-ray is such that slag inclusions will normally appear lighter than the weld. Voids will normally appear darker than the weld. When using gamma-radiography, slag inclusions and voids will normally appear darker than the weld. Improved x-ray film readability usually can be obtained by slight over-exposure at an excitation potential consistent with good x-ray practice, but not over 240 KV. For detailed information on welding techniques, procedure adjustments, and their effects on weld appear-ance and quality, request publication C3.2400 *"Innershield Electrode - Semiautomatic Production Welding Guide".*

An all position wire designed for welding low temperature alloys.

Single and multiple pass welding. Automatic and semiautomatic applications.

Produces a nickel-bearing weld deposit with good Charpy V-Notch properties at low temperatures⁽¹⁾.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Produces a nickel weld deposit (.80-1.1% Ni).
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Applications requiring good CTOD properties and Charpy V-Notch properties.
- Offshore welding applications.
- Storage, pipe, transportation and other applications involving low temperature alloys.
- Roundabout groove welds on heavy wall tubular construction.
- General plate fabrication including bridges.
- Hull plate and stiffener welding on ships and barges.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E61T8-K6 ABS: 3SA Lloyd's: 3SH15 DNV: III MS(H15)

DIAMETERS / PACKAGING

Diame	eter	14 Lb
Inche	s (mm)	Coil
5/64	(2.0)	ED012310

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

	Yield Strength psi (MPa)	rength Tensile Strength E IPa) psi (MPa)		Charp ft-Ibs @ -20°F (-29°C)	Hardness Rockwell B	
Requirements AWS E61T8-K6	50,000 min. (345)	60,000 - 80,000 (414 - 551)	22 min.	20 (27) min.	Not Required	
Test Results Typical NR-203 Nicl	58,000 kel C (400)	71,000 (489)	29	80 - 264 (108 - 358)	50 - 175 (68 - 237)	80

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.29-80. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Sp in/min	Feed eed (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Mel Ra Ibs/hr	t-Off ate (kg/hr)	Depo R Ibs/hi	osition ate ′ (kg/hr)	Efficiency (%)
5/64"	50	(1.3)	16 - 17	120	3.2	(1.5)	2.1	(1.0)	66
DC-	70	(1.8)	17 - 18	170	4.5	(2.0)	3.2	(1.5)	71
3/4" (19mm)	90	(2.3)	19 - 20	210	5.8	(2.6)	4.3	(2.0)	74
1.062 lbs/1000"	110	(2.8)	20 - 21	240	7.0	(3.2)	5.4	(2.4)	77

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI	%V	%Ni	%Cr	%Mo
Requirements AWS E61T8-K6 per A5.29	0.15 max.	.50 - 1.50	.03 max.	.03 max.	.80 max.	1.8 max.	.05 max.	.40 - 1.00	.20 max.	.15 max.
Test Results	.058	.83	.004	<.003	.05	.73	<.01	.57	.08	<.01

RADIOGRAPHIC GUIDELINES

The opacity of NR-203 Nickel C slag to x-ray is such that slag inclusions will normally appear lighter than the weld. Voids will normally appear darker than the weld. When using gamma-radiography, slag inclusions and voids will normally appear darker than the weld. Improved x-ray film readability usually can be obtained by slight over-exposure at an excitation potential consistent with good x-ray practice, but not over 240 KV. For detailed information on welding techniques, procedure adjustments, and their effects on weld appearance and quality, request publication C3.2400 "Innershield Electrode - Semiautomatic Production Welding Guide".

Similar to NR-203 Nickel C, but with increased capability to join high-strength steels.

Designed for all position welding. Single and multiple pass. Automatic and semiautomatic applications.

Produces a nickel bearing weld deposit with excellent Charpy V-Notch properties⁽¹⁾.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Produces a nickel weld deposit (.80-1.1% Ni).
- A good choice for welding weathering steels.

- Handles poor fit-up in the vertical up position. Successfully welds gaps up to 1/4" with offsets up to 1/4".
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Applications requiring good Charpy V-Notch properties.
- Roundabout groove welds on heavy wall tubular construction.
- Offshore welding applications.
- Structural fabrication, including those with seismic requirements⁽¹⁾.
- General plate fabrication including bridges.
- Hull plate and stiffener welding on ships and barges.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E71T8-K2

DIAMETERS/PACKAGING

Diame	eter	14 Lb.
Inches	s (mm)	Coil
5/64	(2.0)	

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy V-Notch ft-Ibs (Joules) @ -20°F (-29°C)
Requirements AWS E71T8-K2	58,000 min. (400)	70,000 - 90,000 (490 - 620)	20 min.	20 min. (27)
Test Results	61,000 - 72,000 (421 - 496)	72,000 - 84,000 (496 - 579)	22 - 30	102 - 212 (137 - 285)

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.29-80. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Sp in/min	e Feed beed (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
5/64"	50	(1.3)	16 - 17	115	3.2 (1.5)	2.3 (1.0)	72
DC-	70	(1.8)	17 - 18	170	4.5 (2.0)	3.3 (1.5)	73
3/4" (19mm)	90	(2.3)	19 - 20	210	5.8 (2.6)	4.4 (2.0)	76
1.091 lbs/1000"	110	(2.8)	20 - 21	245	7.0 (3.2)	5.5 (2.5)	79

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%Al	%V	%Ni	%Cr	%Mo
Requirements AWS E71T8-K2 per A5.29	0.15 max.	0.5 - 1.75	0.03 max.	0.03 max.	0.80 max.	1.8 max.	0.05 max.	1.00 - 2.00	0.15 max.	0.35 max.
Test Results	.05	.85	.009	<.003	.07	1.08	<.01	1.27	.14	.02

RADIOGRAPHIC GUIDELINES

The opacity of NR-203 Ni C Plus slag to x-ray is such that slag inclusions will normally appear lighter than the weld. Voids will normally appear darker than the weld. When using gamma-radiography, slag inclusions and voids will normally appear darker than the weld. Improved x-ray film readability usually can be obtained by slight over-exposure at an excitation potential consistent with good x-ray practice, but not over 240 KV. For detailed information on welding techniques, procedure adjustments, and their effects on weld appearance and quality, request publication C3.2400 "Innershield Electrode - Semiautomatic Production Welding Guide".

The highest deposition rates of any Innershield wire for out-of-position welding.

An extremely popular wire designed for single and multiple pass welding of 3/16" (4.8mm) and heavier mild steel, as well as some low alloy steels.

NR-232's weld deposits meet Charpy V-Notch requirements⁽¹⁾.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Fast freezing slag system supports high deposition rates on out-ofposition welding.
- Self peeling slag.

 Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Structural fabrication, including those subject to seismic requirements⁽¹⁾.
- General plate fabrication including bridges.
- Hull plate and stiffener welding on ships and barges.
- Machinery parts, tanks, hoppers, racks and scaffolding.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E71T-8 ABS: 3SA-3YSAH Lloyd's: 3S-3YSH15 DNV: III YMSH15 G.L.: 3YSH10 N.K.: KSW 53NH10 MIL Spec: MIL-71T-8AS B.V.: SA3YMH

DIAMETERS / PACKAGING

Diame	eter	13.5 Lb.	22 Lb.	50 Lb.
Inches	s (mm)	Coil	Readi-Reel [®]	Coil
.068 .072 5/64	(1.7) (1.8) (2.0)	ED012518 ED012522 ED012525	ED012521 ED012524	ED012519 ED012523 ED012526

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy V-Notch ft-Ibs (Joules) @ -20°F (-29°C)	Hardness Rockwell B
Requirements AWS E71T-8	58,000 (400) min.	70,000 (480) min.	22 min.	20 (27)	
Test Results (1)	60,000 - 74,000 (414 - 510)	72,000 - 87,000 (496 - 600)	22 - 30	20 - 69 (27 - 94)	88-90

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.068" DC- 1/2-1" (12-25mm) .755 lbs/1000"	110 (2.7) 130 (3.3) 150 (3.8) 170 (4.3) 195 (5.0) 250 (6.4) 320 (7.4)	18 - 20 19 - 21 19 - 21 20 - 22 23 - 24 23 - 24 25 - 27	195 225 250 270 300 350 400	5.0 (2.3) 6.2 (2.8) 7.1 (3.2) 7.8 (3.5) 9.4 (4.3) 11.8 (5.4) 15.2 (6.9)	3.9(1.8)4.6(2.0)5.3(2.4)6.1(2.8)7.0(3.2)9.0(4.0)11.4(5.2)	78 74 75 78 74 76 75
.072" DC- 1/2-1" (12-25mm) .778 lbs/1000"	80 (2.0) 140 (3.6) 155 (3.9) 170 (4.3) 250 (6.4) 290 (7.4)	16 - 18 18 - 21 19 - 22 20 - 23 22 - 24 23 - 25	130 225 240 255 315 350	4.0(1.8)6.8(3.1)7.2(3.3)8.0(3.6)11.7(5.3)13.6(6.2)	3.3 (1.5) 5.5 (2.5) 6.0 (2.7) 6.5 (2.9) 9.6 (4.3) 11.0 (5.0)	83 81 83 81 82 81
5/64" DC- 1/2-1" (12-25mm) 1.000 lbs/1000"	60 (1.5) 115 (2.9) 120 (3.0) 130 (3.3) 180 (4.6)	16 - 17 19 - 20 19 - 20 20 - 21 22 - 23	145 260 270 285 365	3.7(1.7)7.0(3.2)7.3(3.3)7.8(3.5)10.9(5.0)	2.7(1.2)5.5(2.5)5.7(2.6)6.2(2.8)8.7(3.9)	73 78 78 79 80

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E71T-8 per A5.20	Report only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results	.17	.72	.007	.003	.31	.71

An extremely high deposition rate wire, designed for single and multiple pass, automatic and semiautomatic welding of mild steel and some low alloy steels.

NR-305 has very good penetration.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- A great choice for downhand welding applications where high deposition rates and good penetration are desired.
- Low spatter.
- Excellent operator appeal.
- Welds well on lightly rusted or primed plate.
- A constant voltage power source is recommended.

• Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- General plate fabrication including bridges and offshore rigs.
- Shipyards.
- Stiffener welding on ships and barges.
- Welding over tack welds made with stick electrodes.

⁽¹⁾Will meet minimum Charpy V-Notch properties recommended in the *"Seismic Provisions for Structural Steel Buildings"* by AISC, dated April 15, 1997.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E70T-6 ABS: 2SA, 2YSA DNV: II YMS GL: 2YS BV: SA2YM

DIAMETERS / PACKAGING

Diameter		22 Lb	50 Lb
Inches (mm)		Readi-Reel	Coil
5/64 3/32	(2.0) (2.4)	ED028696	

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy \ ft-lbs (@ 0°F (-18°C)	/-Notch Joules) @ -20°F (-29°C)
Requirements	58,000 (400)	70,000 (480)	22		20 (27)
AWS E70T-6	min.	min.	min.		min.
Test Results	62,000 - 76,000	72,000 - 89,000	23 - 32	21 - 54	21 - 35
As Welded	(427 - 524)	(496 - 614)		(28 - 73)	(28 - 47)
Stress Relieved ⁽²⁾	54,000 - 62,000 (372 - 427)	71,000 - 84,000 (489 - 579)	28 - 37	34 - 60 (46 - 81)	20 - 56 (27 - 76)

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

⁽²⁾ Stress relieved 1 hour at 1150°F (621°C).

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
5/64"	200 (5.1)	22 - 23	385	12.8 (5.8)	10.0 (4.5)	78
DC+	250 (6.4)	24 - 26	430	16.0 (7.2)	13.0 (5.8)	81
7/8" (22mm)	350 (8.8)	28 - 33	450	22.5 (10.2)	18.8 (8.5)	83
1.07 lbs/1000"	450 (11.4)	30 - 35	545	28.9 (13.1)	24.5 (11.1)	84
3/32"	160 (4.1)	21 - 23	330	13.3 (6.0)	11.0 (5.0)	82
DC+	240 (6.1)	24 - 26	425	20.0 (9.1)	16.7 (7.6)	83
1-1/2 – 2-1/2" (38 - 63mm)	300 (7.6)	27 - 29	475	25.0 (11.3)	21.0 (9.5)	84
1.39 lbs/1000"	400 (10.2)	33 - 35	525	33.4 (15.2)	28.0 (12.7)	83

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%Al
Requirements AWS E70T-6 per A5.20	Report Only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results	.08	1.26	.012	.005	.23	1.19

One of our most popular wires, with a very high deposition rate and excellent penetration..

Designed for single and multiple pass, automatic and semiautomatic welding of thicker mild steels and some low alloy steels.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Very high deposition rates and fast travel speeds.
- Resists weld cracking on high sulfur steels.
- Smooth operation. Good bead shape.

- Easy slag removal in deep grooves.
- Deep penetration.
- Excellent operator appeal.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Fillet, lap and butt welds on 1/8" (3.2mm) and thicker steels.
- Horizontal butt welds such as column-to-column structural connections not subject to seismic requirements.
- General fabrication and assembly welding.

NOTES:

DIAMETERS / PACKAGING

• NR-311 should not be used for applications requiring Charpy V-Notch properties.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E70T-7 ASME SFA-5.20: E70T-7 ABS: E70T-7 per AWS A5.20-95

Diame Inches	eter s (mm)	14 Lb. Coil	22 Lb. Readi-Reel®	50 Lb. Coil	600 Lb. Speed-Feed◎ Reel	600 Lb. Speed-Feed Drum
5/64 3/32 7/64	(2.0) (2.4) (2.8)	ED014464 ED025740	ED014515	ED014459 ED012629 ED012632	ED012630 ED012633	ED012628 ED012631

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

Condition	Yield Strength	Tensile Strength	Elongation	Hardness
	psi (MPa)	psi (MPa)	(%)	Rockwell B
Requirements	58,000 (400)	70,000 (480)	22	
AWS E70T-7	min.	min.	min.	
Test Results	60,000 - 66,000 (414 - 455)	82,000 - 90,000 (565 - 620)	22 - 26	87 - 92

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Fe Spee in/min (m	eed ed n/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt Ra Ibs/hr	-Off ite (kg/hr)	Depo Ra Ibs/hr	osition ate (kg/hr)	Efficiency (%)
5/64"	100 (2	2.5)	21	190	6.4	(2.9)	5.0	(2.3)	78
DC-	160 (4	4.1)	25	275	10.3	(4.7)	8.0	(3.6)	78
1-1/4" (32mm)	240 (6	6.1)	26	355	15.4	(7.0)	12.4	(5.6)	80
1.07 lbs/1000"	300 (1	7.6)	28	410	19.3	(8.8)	15.8	(7.2)	82
0/00"	75 (1.9)	21	200	7.0	(3.2)	5.4	(2.5)	77
3/32	135 (3	3.4)	24	300	13.1	(5.9)	10.2	(4.6)	78
	150 (3.8)	25	325	14.6	(6.6)	11.4	(5.2)	78
1-1/2 (38mm)	210 (5.3)	27	400	20.4	(9.3)	16.5	(7.5)	81
1.62 IDS/1000"	270 (6	6.9)	30	450	26.2	(11.9)	22.0	(10.0)	84
7/0.4%	100 (2	2.5)	23.5	325	12.0	(5.4)	10.0	(4.5)	83
7/64″	145 (3.7)	25.5	400	17.8	(8.1)	14.5	(6.6)	82
	175 (4	4.4)	27	450	21.5	(9.8)	18.0	(8.2)	83
1-1/2″ (38mm)	240 (6	6.1 ⁾	30.5	550	29.5	(13.4)	25.5	(11.6)	86
2.05 lbs/1000"	300 (1	7.6)́	33	625	36.9	(16.7)	33.0	(15.0)	89

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E70T-7 per A5.20-95	Report Only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max.
Test Results	.25	.50	.008	<.003	.10	1.46

NOTE: NR-311 will not produce weld deposits meeting the minimum Charpy V-Notch properties recommended in the "Seismic Provisions for Structural Steel Buildings" by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

Similar to NR-311 wire, but with Charpy V-Notch properties⁽¹⁾.

Designed for downhand, flat, and horizontal welding on 1/8" (3.2mm) and thicker mild steel and some low alloy steels. Automatic and semiautomatic.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- High deposition rates and fast travel speeds.
- Produces a 1.5% Nickel deposit for good low temperature notch toughness.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- General fabrication and assembly welding.
- Structural fabrication, including applications involving seismic requirements⁽¹⁾.
- Single and multiple pass welds.
- Fillet and lap welds.
- Horizontal butt welds such as column-to-column structural connections.
- Deep groove welds.
- Square edge butt welds.

NOTES:

• ⁽¹⁾Meets minimum Charpy V-Notch properties recommended in the *"Seismic Provision for Structural Steel Buildings"*, by AISC, dated April 15, 1997.

- We recommend 5/64" (2.0mm) wire for vertical-down welding.
- 7/64" (2.8mm) wire is limited to approximately 20° downhill.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E70T7-K2 Lloyd's: 2S-2YS DNV: IIYMS GL: 2YS BV: SA2YM NKK: KSW 52 NH10

DIAMETERS / PACKAGING

Diame	eter	22 Lb.	50 Lb.		
Inche	s (mm)	Readi-Reel®	Coil		
5/64 3/32 7/64	(2.0) (2.4) (2.8)	ED017819	ED017822 ED017824		

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

Condition	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy ft-lbs (@ -20°F	V-Notch Joules) (-29°C)	Hardness Rockwell B	
Requirements AWS E70T7-K2	58,000 (400) min.	70,000 (482) min.	20 min.	20 min.	(27) min.		
Test Results	64,000 - 75,000 (441 - 517)	80,000 - 89,000 (551 - 613)	22 - 31	20 - 50	(27 - 68)	87 - 92	

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.29-80. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Mel Ra Ibs/hr	t-Off ate (kg/hr)	Depo R Ibs/hi	osition ate ′ (kg/hr)	Efficien cy (%)
5/64"	100 (2.5)	21 - 23	170	5.5	(2.5)	3.9	(1.8)	70
DC-	130 (3.3)	24 - 26	205	7.2	(3.3)	5.2	(2.4)	72
1" (25mm)	160 (4.0)	25 - 27	235	8.8	(4.0)	6.5	(2.9)	73
$0.930 \text{ lbs}/1000^{\circ}$	200 (5.0)	26 - 28	270	11.0	(5.0)	8.3	(3.8)	75
0.930 lbs/ 1000	240 (6.1)	27 - 29	295	13.3	(6.1)	10.0	(4.5)	75
	75 (1.9)	20 - 22	200	6.2	(2.8)	4.2	(1.9)	67
3/32"	100 (2.5)	21 - 23	245	8.3	(3.8)	5.9	(2.7)	71
DC-	125 (3.1)	23 - 25	285	10.4	(4.7)	7.5	(3.4)	72
1-1/4" (32mm)	150 (3.8)	25 - 27	330	12.5	(5.7)	9.1	(4.1)	72
1.39 lbs/1000"	175 (4.4)	26 - 28	365	14.5	(6.6)	10.8	(4.9)	74
	200 (5.0)	27 - 29	390	16.6	(7.6)	12.3	(5.6)	74
- /	100 (2.5)	22 - 24	310	11.4	(5.2)	8.4	(3.8)	73
7/64"	140 (3.5)	24 - 26	370	15.8	(7.2)	11.8	(5.4)	74
DC-	170 (4.3)	26 - 28	430	19.5	(8.9)	14.5	(6.6)	74
1-1/2" (38mm)	200 (5.0)	28 - 30	470	22.8	(10.4)	17.0	(7.7)	74
1.89 lbs/1000"	240 (6.1)	20 00	520	22.0	(12.1)	20.4	(0.2)	75

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI	%Ni	%Mo	%Cr	%V
Requirements AWS E70T7-K2 per A5.29	.15 max.	.50 - 1.75	.03 max.	.03 max.	.80 max.	1.8 max.	1.00 - 2.00	.35 max.	.15 max.	.05 max.
Test Results	.06	1.23	.005	<.003	.20	1.24	1.28	<.01	.03	<.01

A very high deposition rate wire, designed for automatic and semiautomatic welding on mild steel and some low alloy steels.

Can also be used to join sulfur or high carbon steels.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- High deposition rates for excellent productivity.
- Resists cracking on high sulfur steel.
- Resists porosity on mildly rusty, oil or dirty plate.
- Easy slag removal even in deep grooves.

- Soft, low penetration arc.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- General fabrication.
- Structural fabrication where no seismic requirements exist.
- Machinery bases.
- Heavy equipment repair.
- Multiple pass fillet and lap welds.
- Corner welds and single pass butt welds.
- Single pass 1/4 1/2" (6.4 12.7mm) fillet and lap welds.

NOTES:

 NS-3M should not be used for applications requiring Charpy V-Notch properties.

DIAMETERS / PACKAGING

Diameter Inches (mm)		14 Lb. Coil	22 Lb. Readi-Reel®	50 Lb. Coil	600 Lb. Speed-Feed◎ Reel	600 Lb. Speed-Feed Drum
5/64 3/32 .120	(2.0) (2.4) (3.0)	ED012739	ED017905	ED012740 ED012736 ED012732	ED012734	ED012735 ED012731

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength	Tensile Strength	Elongation	Hardness
	psi (MPa)	psi (MPa)	(%)	Rockwell B
Requirements	58,000 (400)	70,000 (480)	22	
AWS E70T-4	min.	min.	min.	
Test Results Typical NS-3M	60,000 - 70,000 (414 - 483)	72,000 - 93,000 (497 - 641)	22 - 30	85 - 95

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

WELDING POSITIONS

CONFORMANCE

AWS A5.20-95: E70T-4 ASME SFA-5.20: E70T-4 ABS: E70T-4 per AWS A5.20-95

Wire, Polarity Electrical Stickout) Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
5/64"	200(5.1)240(6.1)260(6.6)300(7.6)	29 - 31	280	12.2 (5.5)	10.1 (4.6)	83
DC+		30 - 32	315	14.8 (6.7)	12.1 (5.5)	82
2" (51mm)		30 - 32	330	16.0 (7.3)	13.2 (6.0)	83
1.03 lbs/1000"		31 - 33	350	18.6 (8.4)	15.2 (6.9)	82
3/32" DC+ 2-3/4" (70mm) 1.53 lbs/1000"	110(2.8)150(3.8)185(4.7)230(5.8)275(7.0)	28 - 30 29 - 31 30 - 32 31 - 33 32 - 34	250 300 350 400 450	10.1 (4.6) 14.0 (6.4) 17.4 (7.9) 21.6 (9.8) 26.0 (11.8)	8.2(3.7)11.7(5.3)14.6(6.6)18.3(8.3)22.0(10.0)	81 84 84 85 85
.120	140 (3.6)	28 - 30	380	19.8 (9.0)	15.5 (7.0)	78
DC+	175 (4.4)	29 - 31	450	24.6 (11.2)	20.0 (9.1)	81
2-3/4" (70mm)	200 (5.1)	30 - 32	500	28.0 (12.7)	23.2 (10.5)	83
2.34 lbs/1000"	225 (5.7)	31 - 33	550	31.4 (14.2)	26.2 (11.9)	83
.120	210 (5.3)	35 - 37	450	29.0 (13.2)	25.0 (11.3)	86
DC+	250 (6.4)	36 - 38	500	34.5 (15.6)	29.0 (13.2)	84
3-3/4" (95mm)	300 (7.6)	37 - 39	550	41.5 (18.8)	34.0 (15.4)	82
2.34 lbs/1000"	355 (9.0)	38 - 40	600	49.0 (22.2)	39.5 (18.0)	81

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI
Requirements AWS E70T-4 per A5.20	Report Only	1.75 max.	.03 max.	.03 max.	.60 max.	1.8 max
Test Results Typical NS-3M	.25	.45	.006	<.003	.29	1.59

NOTE: NS-3M will not produce weld deposits meeting the minimum Charpy V-Notch properties recommended in the "*Seismic Provisions for Structural Steel Buildings*" by AISC, dated April 15, 1997. For these and other applications specifying notch toughness, the following Innershield electrodes should be considered: NR-203MP, NR-203 Nickel C Plus, NR-203 Nickel (1%), NR-232, NR-305, NR-311 Ni.

Designed for optimum performance on vertical down hot, fill and cap passes on standard cross-country pipelines and arctic grade pipe.

Excellent crack resistance, plus outstanding CTOD and Charpy V-Notch properties. Both wires also meet API Pipe Grade X42 and X70 requirements.

NR-207-H is a baked wire with a lower hydrogen level for higher strength steels.

A constant voltage power source is recommended.

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.

- Use these wires instead of stick for improved productivity on pipeline projects.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Standard cross country pipelines.
- Arctic grade pipe.

NOTES:

• NR-207-H will deposit weld material with diffusible hydrogen levels of less than 8.0 ml/100g.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E71T8-K6 ABS: E71T8-K6 DNV: IIIYMSH15 BV: SA3YMH GL: 3YSH15

DIAMETERS / PACKAGING

Diameter Inches (mm)	14 Lb. Coil (56 Lb. Carton)	14 Lb. Coil (56 Lb. Pail)	22 Lb. Readi-Reel
NR-207 .068 (1.7) 5/64 (2.0)	ED016280 ED012437	ED016312 ED012438	
NR-207-H .068 (1.7) 5/64 (2.0)		EDS19565 EDS19568	ED019566

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.20

	Yield Strength psi (MPa)	Strength Tensile Strength (MPa) psi (MPa)		Charpy V ft-lbs (J @ -20°F (-29°C)	Hardness Rockwell B	
Requirements AWS E71T-8J	58,000 (400) min.	70,000 - 90,000 (483 - 620)	20 min.	20 (27) min.	Not Specified	
Test Results Typical NR-203MP	58,000 - 64,000 (400 - 441)	75,000 - 80,000 (517 - 551)	20 - 33	130 - 170 (176 - 230)	109 (147)	84 - 90

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.068" DC- 3/4" (19mm) 0.078 lbs/1000"	80(2.0)105(2.6)120(3.0)145(3.6)170(4.3)	17 - 18 18 - 19 19 - 20 21 - 22 21 - 22	190 230 245 275 295	3.8(1.7)5.0(2.2)5.7(2.5)6.8(3.0)8.0(3.6)	$\begin{array}{ccc} 3.0 & (1.3) \\ 4.0 & (1.8) \\ 4.5 & (2.0) \\ 5.5 & (2.4) \\ 6.4 & (2.9) \end{array}$	79 80 79 81 80
5/64" DC- 3/4" (19mm) 1.04 lbs/1000"	70 (1.7) 80 (2.0) 90 (2.2) 110 (2.7) 130 (3.3)	17 - 18 18 - 19 18 - 19 20 - 21 20 - 21	205 225 240 275 300	4.5(2.0)5.1(2.3)5.8(2.6)7.0(3.1)8.3(3.7)	3.4(1.5)3.9(1.7)4.5(2.0)5.5(2.4)6.5(2.9)	76 76 78 79 78

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn	%P	%S	%Si	%AI	%Ni	%Cr	%Mo	%V
Requirements AWS E71T8-K6 per A5.29	.15 max.	.50- 1.50	.03 max.	.03 max.	.80 max.	1.8 max.	.40- 1.00	.20 max.	.15 max.	.05 max.
Test Results Typical NR-207	.06	.94	.005	<.003	.26	.1.07	.76	.02	.02	<.01

Similar to NR-207-H wire, with lower hydrogen and higher strength.

Designed for optimum performance on vertical down hot, fill and cap passes on standard cross country pipelines and arctic grade pipe.

Meets API Pipe Grade X80 requirements.

A constant voltage power source is recommended

ADVANTAGE LINCOLN

- Self-shielded, flux-cored. No need for external gas or flux.
- Produces quality welds in moderate wind conditions with no tenting.
- Use instead of stick for improved productivity on pipeline projects.

- Produces weld deposits exceeding 80,000 psi yield strength.
- Our quality driven manufacturing system – certified to ISO 9002 – and our exceptionally high grade raw materials mean every coil of Innershield delivers great arc characteristics and superior feedability.

TYPICAL APPLICATIONS

- Standard cross-country pipelines.
- Arctic-grade pipe.

NOTES:

• NR-208-H will deposit weld material with diffusible hydrogen levels of less than 8.0 ml/100g.

WELDING POSITIONS

CONFORMANCE

AWS A5.29-98: E91T8-G ASME: SFA-5.20: E91T8-G

DIAMETERS / PACKAGING

	Diame Inche	eter s (mm)	14 Lb. Coil (56 Lb. Pail)	
ĺ	.068 5/64	(1.7) (2.0)	EDS22113 ED023366	

MECHANICAL PROPERTIES⁽¹⁾ - As Welded per AWS A5.29

	Yield Strength psi (MPa)	Tensile Strength psi (MPa)	Elongation (%)	Charpy V ft-Ibs (J @ -20°F (-29°C)	/-Notch oules) @-40°F (-40°C)	Hardness Rockwell B
Requirements AWS E71T-8J	78,000 (538) min.	90,000 - 110,000 (620 - 758)	17 min.	Not Specified	Not Specified	
Test Results Typical NR-203MP	81,000 - 86,000 (558 - 593)	94,000 - 99,000 (648 - 682)	25 - 27	50 (67)	44 (59)	90 - 96

⁽¹⁾ The strength and elongation properties reported were obtained from a .505" tensile specimen artificially aged at 220°F (104°C) for 48 hours, as permitted by AWS A5.20-95. A naturally aged tensile specimen may take months to achieve the specified properties. See AWS A5.20-95, paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallurgical structure of the weld deposit and other factors.

Wire, Polarity Electrical Stickout Wire Weight	Wire Feed Speed in/min (m/min)	Arc Voltage (volts)	Approx. Current (amps)	Melt-Off Rate Ibs/hr (kg/hr)	Deposition Rate Ibs/hr (kg/hr)	Efficiency (%)
.068" DC- 3/4" (19mm) 0.80 lbs/1000"	70(1.7)90(2.2)120(3.0)145(3.6)170(4.3)	15 - 16 17 - 18 19 - 20 20 - 21 21 - 22	165 195 225 255 278	$\begin{array}{ccc} 3.2 & (1.5) \\ 4.0 & (1.8) \\ 5.4 & (2.5) \\ 6.7 & (3.0) \\ 7.7 & (3.5) \end{array}$	2.6 (1.1) 3.3 (1.5) 4.5 (2.0) 5.5 (2.5) 6.3 (2.8)	82 82 83 82 82
5/64" DC- 3/4" (19mm) 1.04 lbs/1000"	70 (1.7) 80 (2.0) 90 (2.2) 110 (2.7) 130 (3.3)	16 - 17 17 - 18 18 - 19 19 - 20 19 - 20	195 220 235 270 295	4.0 (1.8) 4.6 (2.1) 5.4 (2.4) 6.5 (2.9) 7.6 (3.5)	3.2(1.4)3.9(1.7)4.5(2.0)5.5(2.4)6.5(2.9)	81 84 84 85 85

NOTE: These are typical operating procedures and are not intended to serve as specific procedures for any applications.

DEPOSIT COMPOSITION

	%C	%Mn*	%P	%S	%Si*	%AI	%Ni*	%Cr*	%Mo*	%V*
Requirements AWS E91T8-G per A5.29	Report only	1.75 min.	.03 max.	.03 max.	.80 min.	1.8 min	.50 min	.30 min.	.20 min.	.10 min.
Test Results	.05	2.13	.011	<.002	.25	1.13	.79	.02	<.01	<.01

NOTE: In order to meet the alloy requirements of the G group, the weld deposit needs to have the minimum, as specified in the table, of only one of the elements marked with an asterisk.

AGENCY APPROVALS(1)

Innershield [®] Wire ⁽¹⁾	AWS/ ASME	ABS Grade	Lloyd's Grade	DNV Grade	BV Grade	CWB/CSA Grade	GL Grade	Military	Other
NR-203 Nickel C	E61T8-K6	3SA	3SH15	IIIMSH15 ⁽³⁾					JIS
NR-1	E70T-3								
NR-5	E70T-3								
NS-3M	E70T-4					E4802T-4-CH			JIS
NR-305	E70T-6	2SA-2YSA		IIYMS ⁽²⁾	SA2YM ⁽²⁾	E4802T-6-CH	2YS ⁽²⁾		JIS
NR-311	E70T-7					E4802T-7-CH			JIS
NR-131	E70T-10								JIS
NR-311 Ni	E70TG-K2	2SA-2YSA	2S-2YS	IIYMS	SA2YM		2YS		JIS
NR-202	E71T-7								
NR-203MP	E71T-8J	3SA-3YSAH15	3S-3YSH15	IIIYMSH15	SA3YMH	E4801T-8-CH	3YSH15		JIS
NR-203M	E71T-8J	3SA-3YSA	3S-3YS						
NR-232	E71T-8	3SA-3YSAH15	3S-3YSH15	IIIYMSH15	SA3YMH	E4801T-8-CH	3YSH10	MIL-71T-8AS	JIS, TUV
NR-203 Ni C Plus	E71T8-K2								JIS
NR-207	E71T8-K6			IIIYMSH15	SA3YMH	E71T8-K6-H16	3YSH15		JIS, TUV
NR-207-H	E71T8-K6								JIS, TUV
NR-203 Nickel 1%	E71T8-Ni1	3SA-3YSA	3S-3YSH15	IIIYMSH15		E71T8-Ni1-H16	3YSH15		JIS, TUV
NR-211-MP	E71T-11					E4801T-11-CH			JIS
NR-212	E71TG-G					E71TG-G-CH			JIS
NR-152	E71T-14								JIS
NR-208-H	E91T8-G								JIS, TUV

ABS: American Bureau of Shipping

DNV:

Lloyd's: Lloyd's Register of Shipping

Det Norske Veritas

GL: Germanischer Lloyd

BV: Bureau Veritas ⁽¹⁾ Approvals are updated periodically. Consult your local Lincoln district office for the latest Approval/Grade revision.
 ⁽²⁾ 3/32" diameter only.
 ⁽³⁾ Tested at -40°F.

In general, Innershield electrodes will produce weld deposits which achieve hydrogen levels below 16 ml per 100 grams deposited metal. These products, like other products which produce deposits low in hydrogen, must be protected from exposure to the atmosphere in order to maintain hydrogen levels as low as possible, preventing rusting of the product and prevent porosity during welding. Accordingly, the following storage conditions are recommended for Innershield lectrodes in their original, unopened boxes and plastic bags.

The recommended storage conditions are such that they maintain condition of 90 grains of moisture per pound of dry air. Examples of storage conditions that will meet this requirement are given below:

Ambi Temper Fahrenheit	ent rature <i>Celsius</i>	Maximum Relative Humidity
60° - 70°	(16° - 21°)	80%
70° - 80°	(21° - 27°)	60%
80° - 90°	(27° - 32°)	45%
90° - 100°	(32° - 38°)	30%

For best results, electrode should be consumed as soon as practicable. However, it may be stored up to three years from the date of manufacture. Consult your Lincoln distributor or sales representative if there is a question as to when the electrode was made.

Once the electrode packaging is opened, Innershield electrodes can be subject to contamination from atmospheric moisture. Care has been taken in the design of these products to select core ingredients that are essentially resistant to moisture pick-up; however, condensation of the moisture from the atmosphere onto the surface of the electrode can be sufficient enough to degrade the product.

The following minimum precautions should be taken to safeguard product after opening the original package. Electrode should be used within approximately 1 week after opening the original package. Opened electrode should not be exposed to damp, moist conditions or extremes in temperature and/or humidity where surface condensation can occur. Electrodes mounted on wire feeders should be protected against condensation. It is recommended that electrode removed from its original packaging be placed in poly bags (4 mil minimum thickness) when not in use. Innershield electrodes will evidence high moisture levels in the form of gas tracks, higher spatter and porosity. Any rusty electrode should be discarded.

Innershield Products Used for Applications Requiring More Restrictive Hydrogen Control

The AWS specifications for flux-cored electrodes, ANSI/AWS A5.20, states that "Flux-cored arc welding is generally considered to be a low hydrogen welding process". To further clarify the issue, this specification makes available optional supplemental designators for maximum diffusible hydrogen levels of 4, 8 and 16 ml per 100 grams of deposited weld metal.

Some Innershield products have been designed and manufactured to produce weld deposits meeting more stringent diffusible hydrogen requirements. These electrodes are usually distinguished by an "H" added to the product name. These electrodes will remain *relatively* dry under recommended storage conditions in their original, unopened package or container.

For critical applications in which the weld metal hydrogen must be controlled (usually H8 or lower), or where shipping and storage conditions are not controlled or known, only hermetically sealed packaging is recommended. Innershield electrodes are available in hermetically sealed packages on a Special Order basis.

Once the package has been opened, the electrode should not be exposed to conditions exceeding 80% relative humidity for a period greater than 16 hours, or any less humid condition for greater than 24 hours. Conditions that exceed 80% RH will decrease the maximum 16 hour exposure period.

After exposure, hydrogen levels can be reduced by conditioning the electrode. Electrode may be conditioned at a temperature of 230° F (110° C) $\pm 25^{\circ}$ F (-3.8° C) for a period of 6 to 12 hours, cooled and then stored in sealed poly bags (4 mil minimum thickness) or equivalent. Electrode on plastic spools should not be heated at temperatures in excess of 150° F. Electrode that is rusty should be discarded.

Customer Assistance Policy

The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customer's particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying this type of fabrication methods and service requirements.

LINCOLN NORTH AMERICA

DISTRICT SALES OFFICES

MINNESOTA

MINNEAPOLIS 55447-5435 (612) 551-1990 MISSISSIPPI JACKSON 39212-9635

(601) 372-7679 MISSOURI

KANSAS CITY (KS) 66214-1625 (913) 894-0888 ST. LOUIS 63146-3572 (314) 993-5465

MONTANA

Contact SEATTLE District Office (206) 575-2456 NEBRASKA

OMAHA 68046-2826 (402) 339-1809 NEW JERSEY

EDISON 08837-3939 (732) 225-2000

NEW MEXICO ALBUQUERQUE 87111-2158 (505) 237-2433

NEW YORK

ALBANY 12065-1139 (518) 877-8278 BUFFALO 14225-5515 (716) 681-5554 NEW YORK CITY (888) 269-6755 EAST SYRACUSE 13057-1040 (315) 432-0281

NORTH CAROLINA

CHARLOTTE 28273-6200 (704) 588-3251 RALEIGH 27604-8456 (919) 231-5855

OHIO

CINCINNATI 45242-3706 (513) 554-4440 CLEVELAND 44143-1433 (216) 289-4160 COLUMBUS 43221-4073 DAYTON 45439-1254 TOLEDO 43528-9483

OKI AHOMA

OKLAHOMA CITY 73119-2416 (405) 686-1170 TULSA 74146-1622 (918) 622-9353

OREGON

PORTLAND 97230-1030 (503) 252-8835

PENNSYLVANIA BETHLEHEM 18020-2062

(610) 866-8788 ERIE 16506-2979 (814) 835-3531 JOHNSTOWN 15905-2506 (814) 535-5895 PHILADELPHIA 19008-4310 (610) 543-9462 PITTSBURGH 15275-1002 (412) 787-7733 YORK 17404-1144 (717) 764-6565

SOUTH CAROLINA

GREENVILLE 29681-4724 (864) 967-4157 COLUMBIA 29209 (803) 783-2851

SOUTH DAKOTA

SIOUX FALLS 57108-2609 (605) 339-6522

TENNESSEE

KNOXVILLE 37923-4506 (423) 693-5513 MEMPHIS 38115-5946 (901) 363-1075 NASHVILLE 37210-3816 (615) 316-9777 TRI-CITIES 37604-3338 (423) 928-6047

TEXAS

DALLAS 76051-7602 (817) 329-9353 HOUSTON 77060-3143 (281) 847-9444 SAN ANTONIO 78133-3502 (830) 964-2421 UTAH

MIDVALE 84047-3759 (801) 233-9353

VIRGINIA

HERNDON 20170-5227 Washington, D.C. (703) 904-7735 ROANOKE 24153-1447 (800) 916-0778 WILLIAMSBURG 23602-7048 (757) 870-5508

WASHINGTON

SEATTLE 98188-7615 (206) 575-2456 SPOKANE 99005-9637 (509) 468-2770

WEST VIRGINIA

CHARLESTON 25526-9796 (304) 757-9862 WISCONSIN

GREEN BAY 54302-1829 (920) 435-1012 MILWAUKEE 53186-0403 (262) 650-9364

CANADA

ALBERTA CALGARY T2H 2M3 (403) 253-9600 EDMONTON T6H 2K1 (403) 436-7385 WINNIPEG R3N 0C7 (204) 488-6398

BRITISH COLUMBIA

VANCOUVER V3B 7A2 (604) 844-5209

MARITIMES NOVA SCOTIA B2X 3N2 (902) 434-2725

MANITOBA WINNIPEG R3N 0C7

(204) 488-6398 **ONTARIO**

TORONTO M4G 2B9 (416) 421-2600

QUEBEC MONTREAL J5Y 2G3 (514) 654-3121

LINCOLN INTERNATIONAL HEADQUARTERS

LATIN AMERICA

Miami, Florida U.S.A. Phone: (305) 888-3203

EUROPE

The Netherlands Phone: 31 24 3522 911 Cleveland, Ohio U.S.A. Phone: (216) 481-8100

ASIA PACIFIC Singapore Phone: 65 276 0878

HARRIS CALORIFIC DIVISION

2345 Murphy Blvd., Gainesville, Georgia 30504 U.S.A. Phone: 1-800-241-0804 • Fax: (770) 535-0544 • Web Site: www.harriscal.com

THE LINCOLN ELECTRIC COMPANY

Local Sales and Service through Global **Subsidiaries and Distributors** Cleveland, Ohio 44117-1199 U.S.A TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com

> **Cored Wire** C3.2000 3/00

DISTRIBUTED BY:

RUSSIA, AFRICA & MIDDLE EAST

DETROIT 48034-4005 (614) 488-7913 FLUSHING 48433-1855 (937) 299-9506 GRAND RAPIDS 49512-3924 (419) 867-7284

(916) 630-1885 SAN DIEGO 92108-3911 (619) 208-9001 SAN FRANCISCO 94550-9657 (925) 443-9353 COLOBADO DENVER 80112-5115 (303) 792-2418 CONNECTICUT NORTH HAVEN 06238

SACRAMENTO 95677-4729

90670-2936

HAWAII

ILLINOIS

INDIANA

IOWA

KANSAS

KENTUCKY

I OUISIANA

MARYLAND

MICHIGAN

See SEATTLE

District Office

(206) 575-2456

(630) 920-1500

(309) 697-8240

(219) 484-4422

(219) 277-8619

(317) 845-8445

(319) 362-6804

(319) 386-6522

(515) 224-4121

(913) 894-0888

(316) 788-7367

(502) 636-5125

(504) 922-5151

(318) 869-3531

(443) 831-0416

MASSACHUSETTS

(781) 899-2010

(248) 353-9680

(810) 487-1310

(616) 942-8780

BALTIMORE 21050

BOSTON 02154-8414

WICHITA 67037

CHICAGO 60521-5629

PEORIA 61607-2046

FT. WAYNE 46825-5547

SOUTH BEND 46530-0577

INDIANAPOLIS 46038-9459

CEDAR RAPIDS 52402-3160

DAVENPORT 52806-1344

DES MOINES 50265-6218

KANSAS CITY 66214-1625

LOUISVILLE 40203-2906

BATON ROUGE 70809-2256

SHREVEPORT 71108-2521

(860) 742-8887

WASHINGTON DC HERNDON, VA 20170-5227 (703) 904-7735

FLORIDA

USA

ALABAMA

ALASKA

ARIZONA

ARKANSAS

CALIFORNIA

(205) 988-8232

(334) 666-6524

District Office

(206) 575-2456

(602) 348-2004

(501) 771-4842

(209) 276-0110

LOS ANGELES

(562) 906-7700

MOBILE 36693-4310

Contact SEATTLE

PHOENIX 85260-1768

FRESNO 93722-3949

LITTLE ROCK 72116-7034

BIRMINGHAM 35124-1156

JACKSONVILLE 32259-4396 (904) 287-9595 MIAMI 33178 (305) 888-3203 ORLANDO 32714-1974 (407) 788-8557 TAMPA 33619-4480

GEORGIA

ATLANTA 30076-4914 (770) 475-0955 SAVANNAH 31401-5140 (912) 231-9604

(770) 475-0955

