

Technical Overview Omegapak[®] Class 8803 Type P AC Drive 1.5 to 150 hp Variable Torque

TRADEMARK NOTICE:	Omegapak® and SY/MAX® are registered trademarks of Square D. UNI-TELWAY® is a registered trademark of Telemecanique. MODBUS® is a registered trademark of AEG Modicon.
COPYRIGHT NOTICE:	\odot 1992 Square D. All rights reserved. This document may not be copied in whole or in part, or transferred to any other media, without the written permission of Square D.
PLEASE NOTE:	Electrical equipment should be serviced only by qualified electrical maintenance personnel, and this document should not be viewed as sufficient instruction for those who are not otherwise qualified to operate, service or maintain the equipment discussed. Although reasonable care has been taken to provide accurate and authoritative information in this document, no responsibility is assumed by Square D for any consequences arising out of the use of this material.

Table of Contents

Chapter 1:	Introduction	2
General Overview	Motor Drive	2
	Principle of Operation	2
	Benefits	3
	Industries and Applications	3
	Food Industry	3
	Automotive Industry	4
	Wood Industry	4
	Textile Industry	5
	Metallurgy Industry	6
	Paper Industry	6
	Chemical Industry	7
Chapter 2:	Catalog Number Identification	10
Specifications	Product Selection	10
•	Option Selection	11
	Specifications	12
	Technical Characteristics	13
	Design and Operation	14
	Omegapak 1.5 to 3 hp Controllers	14
	Functional Block Diagram	15
	Omegapak 7.5 to 50 hp Controllers	16
	Functional Block Diagram	17
	Omegapak 60 to 150 hp Controllers	18
	Functional Block Diagram	
	Terminal Strip Connections	
	1.5 to 50 hp	
	60 to 150 hp	
	Circuit Diagrams	
	Equipment Requirements	
	Dimensions and Weights 1.5 to 50 hp	
	Dimensions and Weights 60 to 150 hp	
	Mounting in Dust and Damp Proof Metal Enclosure (1.5 to 50 hp)	
	Calculating Enclosure Size for Non-Ventilated Enclosures	
	Recess Mounting	
	Mounting in Dust and Damp Proof Metal Enclosure (60 to 150 hp)	30

Chapter 3:	Introduction	32
Options	Adaptation for ±10 V Control	
	Dynamic Braking and Speed Regulation	33
	Dynamic Braking Principles	33
	Braking Resistor Kits	34
	Ventilation Kit (1.5 to 50 hp drives)	35
	Serial Communication Board	
Chapter 4:	Drive Selection	38
Application Data	Available Motoring Torque	39
••	Continuous Duty	39
	Overtorque Capability	39
	Overspeed Operation ($f \ge 50/60 \text{ Hz}$)	39
	Reduced V/f Operation	40
	Driving Torque Production Envelope	40
	Thermal (Overload) Protection of the Motor	41
	Intermittent Duty	42
	Association with Different Motors	43
	Motor Power Less Than or Equal to Controller Rated Power	43
	Motor Power Greater Than Controller Rated Power	
	Motors in Parallel	43
	Using a Brake Motor	44
	Electric Brake Solenoid	
	Tapered Rotor Motor	44
	Using a Synchronous Permanent Magnet or Wound-Field Motor	
	Using a Synchronous Reluctance Motor	
	Additional Motor Connected Downstream of the Drive Controller	
	Bypassing the Drive Controller	
	Adaptation to the Input Line	
	Line Inductors	
	Inductors Between the Drive Controller and the Motor	
	Recommended Three-Phase Inductors	
Chapter 5:	Drive Controller Settings	48
Parameters and	Dialog Unit	48
Operator Interface	Drive Parameters	49
	Operation Parameters	49
	Adjustment Parameters	49
	Configuration Parameters	
	Display of Faults	50

Figure 1-1	AC Drive Components	2
Figure 1-2	PWM Sine Wave	
Figure 1-3	Motor Output Current	
Figure 2-1	Catalog Number Identification	10
Figure 2-2	Design of 1.5 to 3 hp Controllers	14
Figure 2-3	Functional Block Diagram for 1.5 to 3 hp Controllers	15
Figure 2-4	Design of 7.5 to 50 hp Controllers	
Figure 2-5	Functional Block Diagram for 7.5 to 50 hp Controllers	
Figure 2-6	Design of 60 to 150 hp Controllers	
Figure 2-7	Functional Block Diagram for 60 to 150 hp Controllers	
Figure 2-8	Terminal Strip Connections for 1.5 to 50 hp Controllers	
Figure 2-9	Terminal Strip Connections for 60 to 150 hp Controllers	
Figure 2-10	Typical Circuit Diagram	
Figure 2-11	Alternate Circuit Diagram	
Figure 2-12	Dimension Drawing for 1.5 to 50 hp Controllers	
Figure 2-13	Dimension Drawing for 60 to 150 hp Controllers	
Figure 2-14	Ventilation for Dust and Damp Proof Enclosure	
Figure 3-1	Block Diagram of ±10 V Control Module	32
Figure 3-2	Ventilation Kit	
Figure 4-1	Operation with Quadratic Torque Load	40
Figure 4-2	Operation with Constant Torque Load	
Figure 4-3	Thermal Trip Curves	
Figure 4-4	Intermittent Duty	42
Figure 4-5	Overload Curves for Controller	
Figure 4-6	Motors in Parallel	43
Figure 4-7	Connecting an Additional Motor	44
Figure 4-8	Bypassing the Drive (Direct Coupling)	
Figure 5-1	Dialog Unit	48

Notes:

Table 2-1	Product Selection	10
Table 2-2	Options	
Table 2-3	Specifications	
Table 2-4	Drive Controller Power and Current	
Table 2-5	Terminal Strip Characteristics (1.5 to 150 hp)	
Table 2-6	Equipment Required for all Controllers	
Table 2-7	Equipment Required for 1.5 to 15 hp 460 V Controllers	
Table 2-8	Equipment Required for 20 to 60 hp 460 V Controllers	23
Table 2-9	Equipment Required for 100 to150 hp 460 V Controllers	24
Table 2-10	Terminal Wire Range for 1.5 to 15 hp Controllers	24
Table 2-11	Terminal Wire Range for 20 to 150 hp Controllers	25
Table 2-12	Dimensions and Weights for 1.5 to 50 hp Controllers	26
Table 2-13	Dimensions and Weights for 60 to 150 hp Controllers	27
Table 2-14	Minimum Metal Enclosure Dimensions	29
Table 3-1	Standard Braking Resistors	34
Table 4-1	Suitable Transformers	45
Table 4-2	Suitable Inductors	46

Notes:

Introduction	2
Motor Drive	2
Principle Of Operation	2
Benefits	3
Industries and Applications	3
Food Industry	3
Automotive Industry	
Wood Industry	
Textile Industry	5
Metallurgy Industry	6
Paper Industry	6
Chemical Industry	

INTRODUCTION

MOTOR DRIVE

AC squirrel cage induction motors are the most widely used in industry today because they are rugged, simple and economical.

With modern techniques, it is possible to vary motor speed electrically while maintaining the torque characteristics required by the machines encountered in most applications. To obtain this result, along with optimized performance, it is essential to supply the stator windings of the motor with variable voltage and frequency. The Omegapak Type P AC drive is specifically designed for this use.

The drive is comprised of (see Figure 1-1):

- ADC supply obtained from a bridge rectifier fed by three-phase AC input lines
- □ A filter capacitor circuit
- □ An inverter consisting of six power transistors.

The inverter is composed of one or three isolated modules according to the motor rating. It uses the fixed DC voltage for creating three-phase supply with variable voltage and frequency. The AC drive is controlled by a microprocessor.

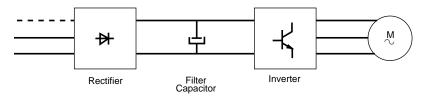


Figure 1-1 AC Drive Components

PRINCIPLE OF OPERATION

The Omegapak Type PAC drive operates on the principle of sinusoidal pulse width modulation (PWM) by chopping a fixed, smooth DC waveform (Figure 1-2). The output current is very close to a sine wave, insuring uniform and smooth rotation of motors even at a very low speed (Figure 1-3).

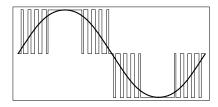


Figure 1-2 PWM Sine Wave

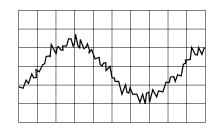
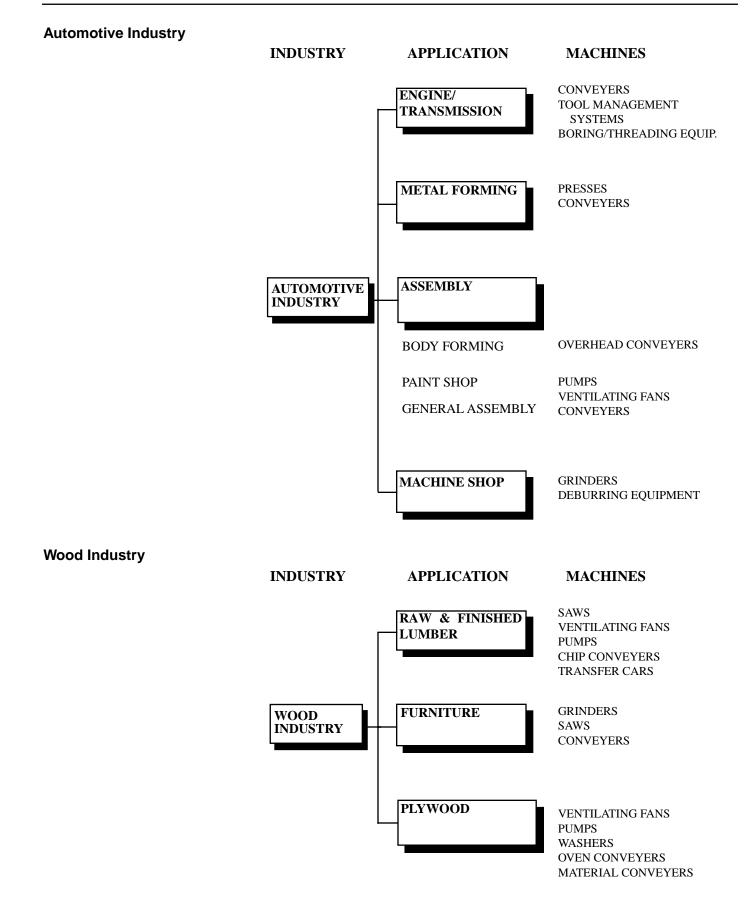
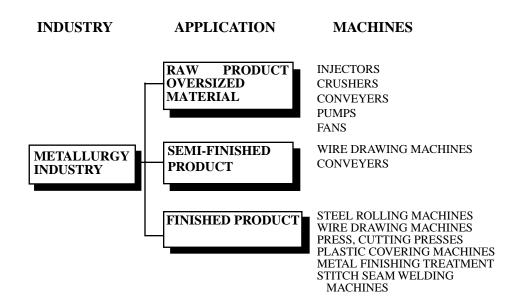
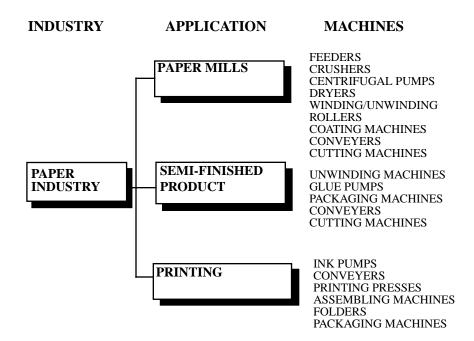



Figure 1-3 Motor Output Current

BENEFITS	The Omegapak Type P drive is designed to provide advanced performance, protec- tion and features which industrial users and OEMs demand.				
	P drive make it ideal f also provides a founda	or a wide variety of industri	reliability of the Omegapak Type al applications. The Type P drive peatability and precise speed con- l control applications.		
	vanced functions with up. Most applications the programming of th	out compromising the need require the adjustment of one drive is organized and str and controlled access to a	th maximum flexibility and ad- l for ease of use and simple start nly a few parameters. Therefore, uctured to support easy access to dvanced functions for more de-		
		P drive is accepted worldwid ction specified by UL, CSA	de and adheres to rigid standards , VDE and IEC.		
INDUSTRIES AND APPLICATIONS Food Industry	The Omegapak Type industrial applications		torque control solutions in many		
	INDUSTRY	APPLICATION	MACHINES		
		BOTTLING LINES BOX & BAG HANDLING	CONVEYERS FILLING MACHINES CAPPING MACHINES LABELING WRAPPING PUMPS CONVEYERS FILLING, FOLDING, LABELING WRAPPING CUTTING PRESSES		
	FOOD INDUSTRY	DRYING FREEZING AIR CONDITIONING	FANS CONVEYERS TRANSPORTERS FOR FREEZING TUNNELS SCREW PUMPS ARCHIMEDIAN SCREW		
		BAKERY CONFECTIONERY MEAT	CONVEYERS CRUNCHERS MIXERS DOUGH MACHINES PUMPS AGITATORS		

PUMPS CONVEYERS FILLING MACHINES MIXERS


MILK & DAIRY


Textile Industry

INDUSTRY APPLICATION MACHINES FIBER FABRICATION **BOBBIN WINDER** TEXTURING MACHINES MAN MADE FIBERS GEAR PUMPS MIXERS EXTRUDER TWISTER, DOUBLER DRAWING ROLLER WASHERS NATURAL FIBERS CONVEYERS **BEAM WRAPPERS** CARDING MACHINES PRESSER FRAMES TEXTILE FIBER **KNITTERS** INDUSTRY KNITTING CIRCULAR RIB KNITTERS WEAVER'S LOOM DYERS PICKING MACHINES FLOCKING MACHINES PRINTING MACHINES SCRAPERS BAG HANDLING MACHINES SCREW PUMPS ARCHIMEDIAN SCREW SEWING MACHINES CLOTHING CUTTING MACHINES CONVEYERS WASHING MACHINES DRY CLEANING IRONER SPECIAL MACHINES LEATHER TRANSPORTERS HANDLING MACHINES

Metallurgy Industry

Paper Industry

Chemical Industry

INDUSTRY APPLICATION MACHINES CENTRIFUGAL PUMPS PETROLEUM FANS DOSING, METERING PUMPS GRANULATOR MIXERS CONTAINER HANDLING MIXERS AGITATORS PHARMACY PACKAGING MACHINES FANS DOSING CONVEYORS, PUMPS FERTILIZERS CHEMICAL CRUNCHERS **INDUSTRY** MIXERS PACKAGING MACHINES CENTRIFUGAL PUMPS AGITATORS DOSING PUMPS PAINT CRUNCHERS MIXERS PACKAGING MACHINES CENTRIFUGAL PUMPS AGITATORS

Notes:

Catalog Number Identification	10
Product Selection	
Option Selection	
Specifications	
Technical Characteristics.	
Design and Operation	
Omegapak 1.5 to 3 hp Controllers	
Functional Block Diagram	
Omegapak 7.5 to 50 hp Controllers	
Functional Block Diagram	
Omegapak 60 to 150 hp Controllers	
Functional Block Diagram	
Terminal Strip Connections	
1.5 to 50 hp	
60 to 150 hp	
Circuit Diagrams	
Equipment Requirements	
Dimensions and Weights 1.5 to 50 hp.	
Dimensions and Weights 60 to 150 hp	
Mounting in Dust and Damp Proof Metal Enclosure (1.5 to 50 hp)	
Calculating Enclosure Size for Non-Ventilated Enclosures	
Recess Mounting	
Mounting in Dust and Damp Proof Metal Enclosure (60 to 150 hp)	

CATALOG NUMBER

Consult Figure 2-1 for the interpretation of the catalog numbers that appear throughout this manual.

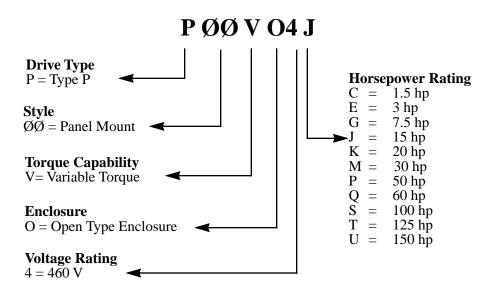


Figure 2-1 Catalog Number Identification

PRODUCT SELECTION

Table 2-1Product Selection

Supply		Maximu	Open Type	
Voltage			Output Current (Amperes)	Enclosure for Panel Mount Type Number
460 V	1.1	1.5	2.6	PØØVO4C
+10%/-15%	2.2	3	4.8	PØØVO4E
50/60 Hz	5.5	7.5	11	PØØVO4G
	11	15	21	PØØVO4J
	15	20	27	PØØVO4K
	22	30	40	PØØVO4M
	37	50	65	PØØVO4P
	45	60	77	PØØVO4Q
	75	100	124	PØØVO4S
	90	125	156	PØØVO4T
	110	150	180	PØØVO4U

OPTION SELECTION

Table 2-2 Options

Option	Type Number	Drive Rating: 460 V	
Δ Adaptation for \pm 10 V Control	VW3-A45108	All types	
Dynamic Braking and	8803 PB01	1.5-30 hp (1.1-22 kW)	
Speed Regulation	8803 PB02	50 hp (37 kW)	
	8803 PB03	60-150 hp (46-110 kW)	
Dynamic Braking Resistors	8803 PR01	1.5-7.5 hp (1.1-5.5 kW)	
	8803 PR02	15-20 hp (11-15 kW)	
	8803 PR02 (2 ea.)	30-50 hp (22-37 kW)	
	8803 PR04	60-100 hp (46-75 kW)	
	8803 PR04 (2 ea.)	125-150 hp (90-110 kW)	
Δ Gasket Kits (1.5-50 hp drives)	VY1-A451U1501	1.5 hp (1.1 kW)	
	VY1-A451U4001	3-7.5 hp (2.2-5.5 kW)	
	VY1-A451U7501	15 hp (11 kW)	
	VY1-A451D1101	20 hp (15 kW)	
	VY1-A451D1501	30 hp (22 kW)	
	VY1-A451D3001	50 hp (37 kW)	
Δ Ventilation Kit (1.5 to 50 hp drives)	VY1-A05107	1.5-50 hp (1.1-37 kW)	
Serial Communication Kit	8803 PS01	All types	
Δ Cable Kit 9-pin to 9-pin Δ Cable Kit 9-pin to 25-pin	VY1-A45509 VY1-A45525	All Types	
Δ NOTE: Order by part number,	not Class and Type.		

SPECIFICATIONS

Table 2-3 Specifications

Output voltage	Maximum voltage equal to input line voltage				
Frequency range	1 to 67/80 Hz				
Torque/overtorque	See page 39				
Speed reference	0-10 V, 0-20 mA, 4-20 mA, 20-4 mA				
Frequency resolution	Analog reference: 0.015 Hz Digital reference (by serial link): 0.1 Hz				
Reference response time	10 ms < t < 20 ms				
Low speed/high speed limits	Adjustable				
Ramps	Acceleration: 1 to 990 seconds Deceleration: 1 to 990 seconds				
Reversing	Control inputs Optional: adaptation for \pm 10 V control (page 32)				
Braking to standstill	By DC injection: Automatic for 0.5 s if the frequency drops below 1 Hz Manual by external signal				
Dynamic braking	By optional resistor				
Drive controller protection	Against short circuits: Between output phases ^[1] Between output phases and ground Against input line supply under/overvoltage Against overheating (thermal sensor)				
Motor protection	Incorporated electronic thermal protection				
Automated system dialog	Optional multidrop serial link				
Temperature	Operation: + 32° to + 100° F (0° to + 40° C) Storage: - 15° to + 160° F (- 25° to + 70° C)				
Humidity	90% maximum without condensation or dripping water ^[2]				
Altitude	\leq 3300 ft (1000 m); above this derate by 3% for every 3300 ft				
Degree of protection	Open: Open/IP20 (1.5 to 50 hp) Open/IP10 (60 to 150 hp)				
Pollution	Protect the drive controller against dust, corrosive gases and splashing liquid $\ensuremath{^{[2]}}$				
	the second different of each and the second strategies and the second strategies of the second strategies of the second strategies and the second strategies and the second strategies are strategies and the second strategies are strategies and the second strategies are strategies				

^[1] PØØVO4T and -4U: protection assured if length of motor-drive controller cables is greater than 75 ft (25 m). Otherwise, install line inductors

[2] The controller electrical creepages are designed for use in a Pollution Degree 2 environment per NEMA ICS-111A and IEC 664A.

TECHNICAL CHARACTERISTICS

Table 2-4 **Drive Controller Power and Current**

Supply Voltage	Part No.	Motor Power		Line Current ^[1]	Rated Output Current	Transient Output Current	Total Dissipated Power @ Rated Load ^[2]	Fault Withstand Current
		kW	hp	А	А	A	W	A rms sym.
460 V	PØØVO4C	1.1	1.5	3.9	2.6	2.9	80	5000
+10%/-15%	PØØVO4E	2.2	3	7	4.8	5.3	110	5000
50/60 Hz	PØØVO4G	5.5	7.5	16	11	12	190	5000
	PØØVO4J	11	15	31	21	23	350	5000
	PØØVO4K	15	20	40	27	30	450	5000
	PØØVO4M	22	30	60	40	44	600	5000
	PØØVO4P	37	50	98	65	72	800	10000
	PØØVO4Q	45	60	115	77	85	1000	10000
	PØØVO4S	75	100	186	124	136	1600	10000
	PØØVO4T	90	125	234	156	170	1800	10000
	PØØVO4U	110	150	270	180	200	2200	10000

[1] The values given correspond to the current absorbed by the drive controller on a low impedance input line supply, with the rated load and speed conditions, for the associated motor. These values can be reduced by adding line inductors, or when power is supplied via a suitable transformer or autotransformer.
[2] Multiply by 3.41 to obtain BTU per hour.

DESIGN AND OPERATION Omegapak 1.5 to 3 hp Controllers

This section applies to 1.5 to 3 hp drive controllers at 460 V (PØØVO4C to PØØVO4E).

The measurement board components, rectifier, filter capacitors, thermal sensor and the six transistor modules of these drive controllers are all mounted on the power board. The dialog unit and control jumpers are located on the control board.

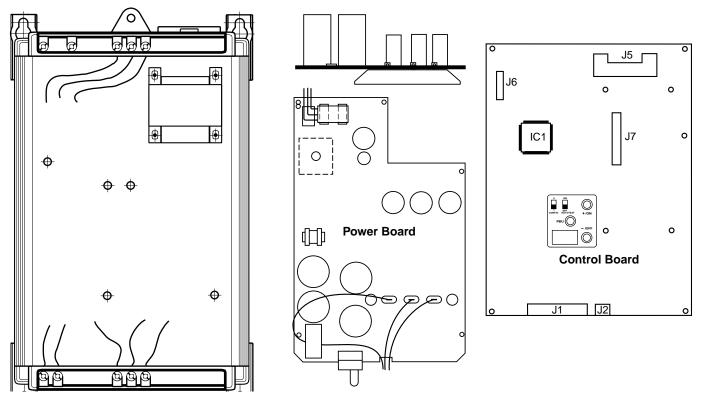
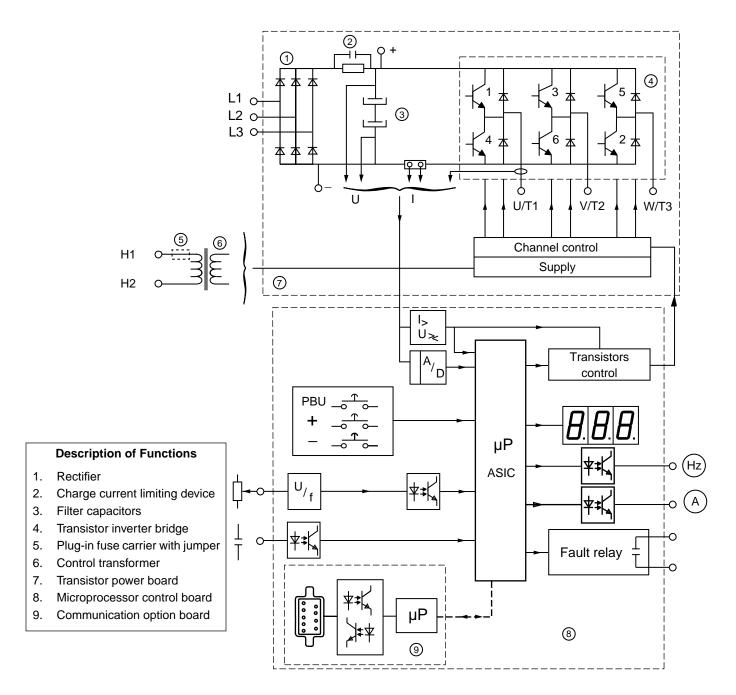
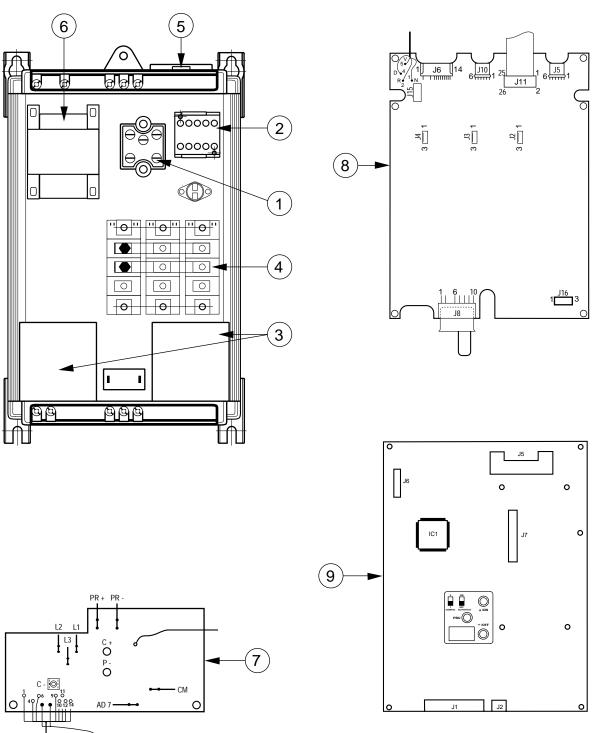
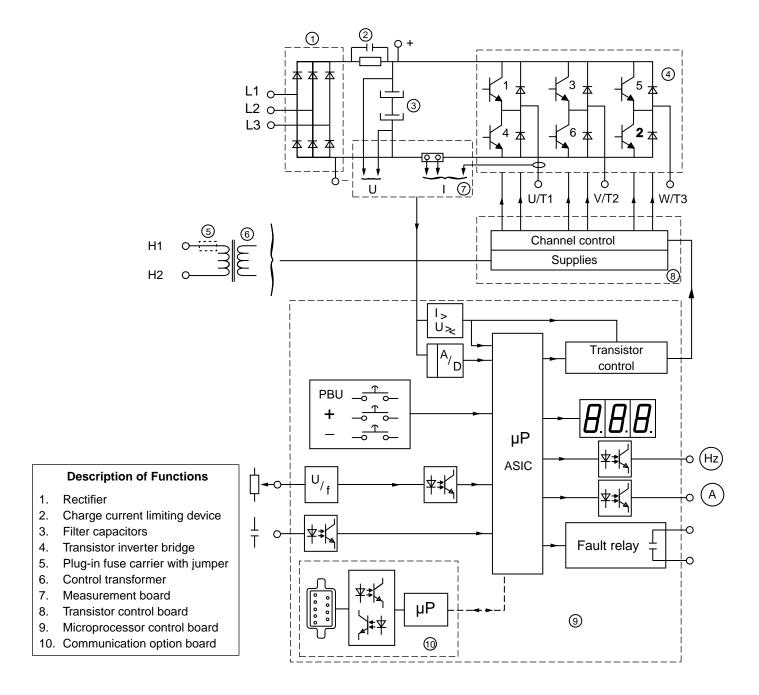
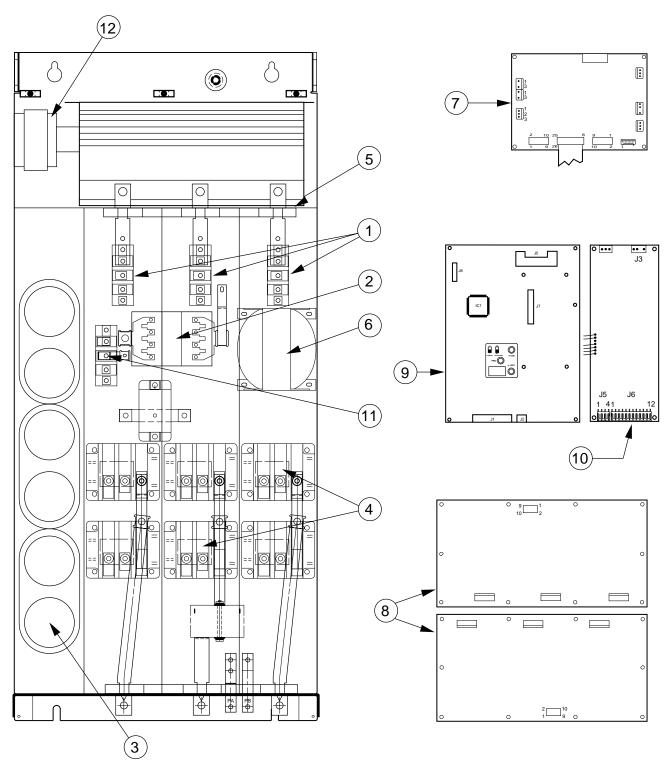



Figure 2-2 Design of 1.5 to 3 hp Controllers

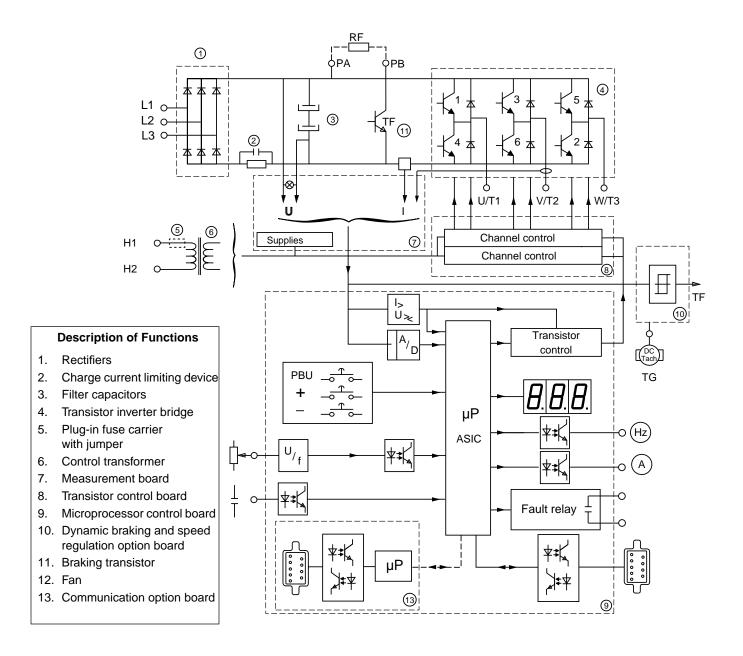

Functional Block Diagram


Omegapak 7.5 to 50 hp Controllers

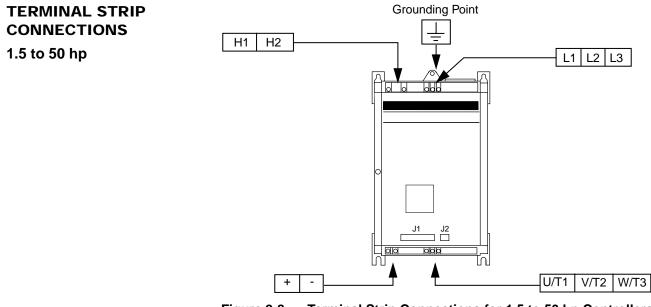
This section applies to 7.5 to 50 hp drive controllers at 460 V (PØØVO4G to 4P).


Functional Block Diagram

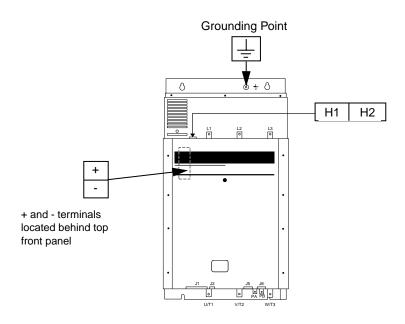


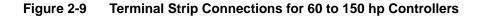

Omegapak 60 to 150 hp Controllers

This section applies to the 60 to 150 hp drive controllers at 460 V (PØØVO4Q to PØØVO4U).

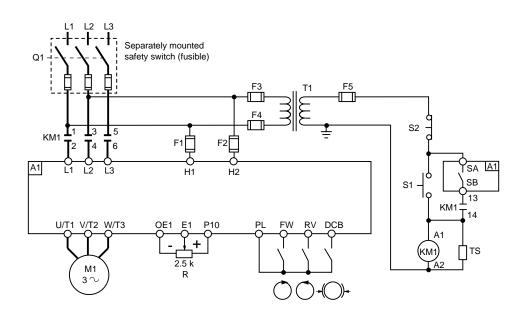


Functional Block Diagram





60 to 150 hp



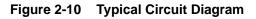

Jumper	Item	Fun	oction	Characteristics
				PØØVO4_
	L1 L2 L3	3-phase power su	ipply	460 V +10%/-15% @ 50/60 Hz
	H1 H2	Single phase con	trol supply	460 V @ 50/60 Hz
	U/T1 V/T2 W/T3	Output connection	ns to the motor	460 V @ 50/60 Hz
1.5 to 50 hp	+ -	Filtered DC voltag	je	550 to 800 V
60 to 150 hp	PA PB	Braking Resistand	ce	
	OE1 E1 P10 E2 EC	Speed reference Input 1 - Speed re Output voltage Input 2 - Speed re Input 3 - Speed re	eference voltage	0V 0 - 10 V, Impedance = 28 kΩ 10 V, Is = 10 mA 0 - 10 V, Impedance = 28 kΩ 0 - 20 mA, 4 - 20 mA, 20-4 mA, Impedance = 100 Ω
J1	A01 A02	Analog output 1 Analog output 2		0 - 20 mA, 10 V maximum 0 - 20 mA, 10 V maximum
	PL NL FW RV DCB	Control inputs sup Negative supply Forward control ir Reverse control ir DC injection braki	nput	24 V, Is = 60 mA maximum -15 V, Is = -10 mA maximum 24 V (minimum 19 V, maximum 30 V), Impedance = $1.5 \text{ k}\Omega$ 24 V (minimum 19 V, maximum 30 V), Impedance = $1.5 \text{ k}\Omega$ 24 V (minimum 19 V, maximum 30 V), Impedance = $1.5 \text{ k}\Omega$
J2	SA SB	Fault relay output	-	Closes when power is applied, opens on fault Voltage free contact (220/240 V, 50/60 Hz, 2 A maximum) V min 10 V, I min 16 mA
60 to 150 hp J5	SN+ SGN PN	Do Not Connect	Braking Option	Note: These connections are at input line potential with respect to ground.
60 to 150 hp	300 V 145 V 70 V 10 V 0 V	Do Not Connect		
J6	PZ PY	Braking Resistance Thermocontact		
	LA LB	Mechanical Brake Control Relay		Voltage free contact (220/240 V, 50/60 Hz, 2 A max) V min 10 V,I min 16 mA

Table 2-5Terminal Strip Characteristics for 1.5to 150 hp Controllers

CIRCUIT DIAGRAMS

Figure 2-10 and Figure 2-11 give the typical and alternate circuit diagrams for the Omegapak Type P AC drive. The alternate circuit diagram may be used when the drive is connected to the load-side of an existing combination starter.

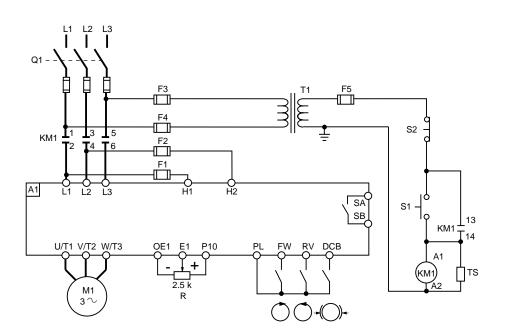


Figure 2-11 Alternate Circuit Diagram

EQUIPMENT REQUIREMENTS

The equipment lists in the following tables are valid for both versions of the circuit diagram (see Figure 2-10 and Figure 2-11 on page 22).

Table 2-6Equipment Required for all Controllers, Ratings and
Models

F1- F5	Fuse carriers	Class 9080 FB1611CC
R1	Potentiometer	Class 9001 K2106
S1-S2	Push buttons	Class 9001 KR1UH13
	Control station enclosure ^[1]	Class 9001 KYAF3
^[1] Accep	ts R1, S1 and S2.	

Table 2-7 Equipment Required for 1.5 to 15 hp 460 V Controllers

M1	Motor hp	1.5	3	7.5	15
A1	Drive	PØØVO4C	PØØVO4E	PØØVO4G	PØØVO4J
Q1	Safety Switch (Fusible)	Class 3110 H361	Class 3110 H361	Class 3110 H361	Class 3110 H362
	+ 3 Fuses [1]	KTS-R-6	KTS-R-10	KTS-R-20	KTS-R-40
KM1	Contactor	Class 8502 PC3.10EV02	Class 8502 PC3.10EV02	Class 8502 PD3.10EV02	Class 8502 PF1.11V02
TS	Suppressor	Class 9999 PZV250	Class 9999 PZV250	Class 9999 PRV250	Class 9999 PSF220
T1	Transformer	Class 9070 K50D1	Class 9070 K50D1	Class 9070 K50D1	Class 9070 K75D1
F1, F2	Control Fuses [1]	FNQ-R-1.0	FNQ-R-1.0	FNQ-R-1.0	FNQ-R-1.0
F3, F4	Control Fuses [1]	FNQ-R-1/4	FNQ-R-1/4	FNQ-R-1/4	FNQ-R-1/4
F5	Control Fuse [1]	FNQ-R-1/2	FNQ-R-1/2	FNQ-R-1/2	FNQ-R-3/4
		[1] Bussman	or equivalent	-	-

Table 2-8 Equipment Required for 20 to 60 hp 460 V Controllers

M1	Motor hp	20	30	50	60
A1	Drive	PØØVO4K	PØØVO4M	PØØVO4P	PØØVO4C
Q1	Safety Switch (Fusible)	Class 3110 H362	Class 3110 H363	Class 3110 H364	Class 3110 H364
	+ 3 Fuses [1]	KTS-R-50	KTS-R-80	KTS-R-125	KTS-R-150
KM1	Contactor	Class 8502 PF3.11V02	Class 8502 PG1.11V02	Class 8502 PJ1.11V02	Class 8502 PJ1.11V02
TS	Suppressor	Class 9999 PSF220	Class 9999 PSF220	Class 9999 PSJ220	Class 9999 PSJ220
T1	Transformer	Class 9070 K75D1	Class 9070 K150D1	Class 9070 K200D1	Class 9070 K200D1

M1	Motor hp	20	30	50	60
F1, F2	Control Fuses ^[1]	FNQ-R-1.0	FNQ-R-1.0	FNQ-R-3.0	FNQ-R-3.0
F3, F4	Control Fuses [1]	FNQ-R-1/4	FNQ-R-1/2	FNQ-R-1/2	FNQ-R-1/2
F5	Control Fuse [1]	FNQ-R-3/4	FNQ-R-1.5	FNQ-R-2.0	FNQ-R-2.0

Table 2-8Equipment Required for 20 to 60 hp 460 V Controllers
(Continued)

Table 2-9Equipment Required for 100 to150 hp 460 V
Controllers

M1	Motor hp	100	125	150
A1	Drive	PØØVO4S	PØØVO4T	PØØVO4U
Q1	Safety Switch (Fusible)	Class 3110 H365	Class 3110 H365	Class 3110 H365
	+ 3 Fuses [1]	KTS-R-225	KTS-R-250	KTS-R-300
KM1	Contactor	Class 8502 PK1.11V02	Class 8502 PK1.11V02	Class 8502 PK5.11V02
TS	Suppressor	Class 9999 PSJ220	Class 9999 PSJ220	Class 9999 PSJ220
T1	Transformer	Class 9070 K250D1	Class 9070 K250D1	Class 9070 K250D1
F1, F2	Control Fuses [1]	FNQ-R-3.0	FNQ-R-3.0	FNQ-R-3.0
F3, F4	Control Fuses [1]	FNQ-R-3/4	FNQ-R-3/4	FNQ-R-3/4
F5	Control Fuse [1]	FNQ-R-2.5	FNQ-R-2.5	FNQ-R-2.5
	[1] _B	ussman or equiv	/alent	

Table 2-10 Terminal Wire Range for 1.5 to 15 hp Controllers

Terminals	Drive Part No.	Max. Wire Size ^[1]		Mounting Screw	Required Terminal Torque
		AWG	mm ²	mm	lb-in
H1, H2	All ratings	14	2.5		
PL, FW, RV, DCB, SA, SB, NL, OE1, E1, P10, E2, EC	All ratings	18	1	N/A	
L1,L2,L3,U/T1,V/T2,W/T3,	PØØVO4C	8	10	N/A	15
+, -	PØØVO4E	8	10	N/A	15
	PØØVO4G	8	10	N/A	15
	PØØVO4J ^[2]	8	10	N/A	15

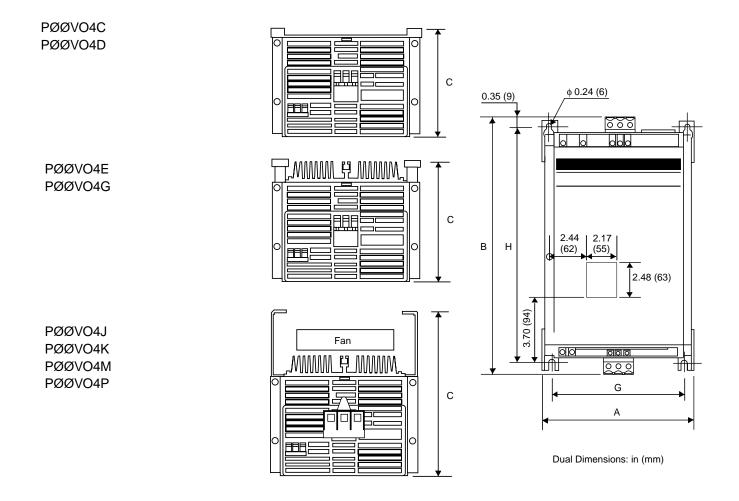
[1] 60/75° C copper only.

^[2] Controller shipped with terminal adapter that accepts AWG 4 wire max (part no. LA9Z960).

Terminals	Drive Part No.	Part No. Max. Wire Size		Mounting Screw ^[3]	Required Terminal Torque
		AWG	mm ²	mm	lb-in
H1, H2	All ratings	14	2.5		
PL, FW, RV, DCB, SA, SB, NL, OE1, E1, P10, E2, EC	All ratings	18	1	N/A	
L1,L2,L3,U/T1,V/T2,W/T3,	PØØVO4K ^[2]	8	10	N/A	15
+, -	PØØVO4M ^[2]	8	10	N/A	15
	PØØVO4PFS	2	30	N/A	30
	PØØVO4Q	N/A	N/A	20x3 M6 screw	
	PØØVO4S	N/A	N/A	25x3 M8 screw	
	PØØVO4T	N/A	N/A	25x3 M10 screw	
	PØØVO4U	N/A	N/A	25x3 M10 screw	
PA-PB	PØØVO4Q	N/A	N/A	15x3 M6 screw	
	PØØVO4S	N/A	N/A	15x3 M6 screw	
	PØØVO4T	N/A	N/A	15x3 M6 screw	
	PØØVO4U	N/A	N/A	15x3 M6 screw	

Table 2-11 Terminal Wire Range for 20 to 150 hp Controllers

[1] 60/75° C copper only.
 [2] Controller shipped with terminal adapter that accepts AWG 4 wire max (part no. LA9Z960).


[3] Requires user supplied lug.

_

DIMENSIONS AND WEIGHTS 1.5 to 50 hp

Table 2-12 Dimensions and Weights for 1.5 to 50 hp Controllers

				•		-	
Drive	Part No.	A in (mm)	B in (mm)	C in (mm)	G in (mm)	H in (mm)	Weight lb (kg)
PØØ	VO4C	9.41 (239)	15.04 (382)	6.69 (170)	8.35 (212)	14.17 (360)	17.6 (8)
	VO4E VO4G	9.41 (239)	15.83 (402)	7.56 (192)	8.35 (212)	14.96 (380)	24.2 (11) 25.3 (11.5)
PØØ	ðVO4J	9.21 (234)	15.94 (405)	10.55 (268)	8.19 (208)	14.17 (360)	33 (15)
PØØ	VO4K	9.21 (234)	21.85 (555)	10.55 (268)	8.19 (208)	20.08 (510)	46.2 (21)
PØØ	VO4M	9.21 (234)	23.43 (595)	10.55 (268)	8.19 (208)	21.65 (550)	51.7 (23.5)
PØØ	VO4P	9.21 (234)	32.28 (820)	10.55 (268)	8.19 (208)	29.53 (750)	66 (30)

DIMENSIONS AND WEIGHTS 60 to 150 hp

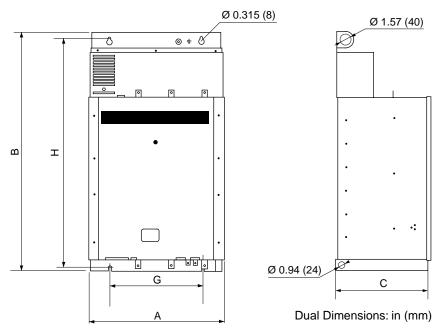


Figure 2-13 Dimension Drawing for 60 to 150 hp Controllers

Table 2-13 Dimensions and Weights for 60 to 150 hp Controllers
--

Drive Part No.	A in (mm)	B in (mm)	C in (mm)	G in (mm)	H in (mm)	Weight lb (kg)
PØØVO4Q	19.06 (484)	33.86 (860)	13.78 (350)	13.19 (335)	32.28 (820)	189 (86)
PØØVO4S	19.06 (484)	40.94 (1040)	13.78 (350)	13.19 (335)	39.37 (1000)	231 (105)
PØØVO4T	23.42 (595)	46.77 (1188)	14.37 (365)	17.52 (445)	45.67 (1160)	308 (140)
PØØVO4U	23.42 (595)	46.77 (1188)	14.37 (365)	17.52 (445)	45.67 (1160)	308 (140)

MOUNTING IN DUST AND DAMP PROOF METAL ENCLOSURE (1.5 to 50 hp Drives) Degree of protection: NEMA Type 12 (IP54).

Provide a stirring fan to circulate the air inside the enclosure and prevent hot spots in the drive controller. This allows operation of the controller in an enclosure with a maximum internal temperature of 140° F (60° C). Ventilation kit VY1-A05107 may be used for this purpose.

Locate the fan to ensure:

- \Box Air movement over the control and power boards.
- □ Air flow inside enclosure = $200 \text{ CFM} (100 \text{ dm}^3/\text{s})$, fan mounted beneath the controller at a maximum distance of 2 in (50 mm); see Figure 2-14.

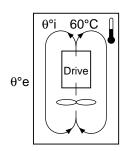


Figure 2-14 Ventilation for Dust and Damp Proof Enclosure

Calculating Enclosure Size for Non-Ventilated Enclosures

Below is the equation for calculating Rth (°C/W), the maximum allowable thermal resistance of the enclosure:

Rth =
$$\frac{60 - \theta^{\circ} e}{P}$$

 $\theta^{\circ} e = Maximum external temperature (°C)$
 $P = Total power dissipated in enclosure (W)$

For the power dissipated by the controllers at rated load, see Table 2-1 on page 10.

Useful heat exchange surface area of a wall mounted enclosure S (in^2) consists of the sides, top and front. The minimum surface area required for a controller enclosure is calculated as follows:

 $S = \frac{K}{Rth}$ Rth = Thermal resistance of the enclosure (calculated previously) K = 300 for a painted metal enclosure

Do not use polymetric enclosures, since they have poor thermal conduction. Do not install enclosures where external heat sources can add to enclosure heat load.

Below is an example of how to calculate the enclosure size for a PØØVO4E (3 hp) mounted in a NEMA 12 enclosure with internal stirring fan.

- □ Maximum external temperature: 30°C
- Dever dissipated inside the enclosure: 110 W
- □ Maximum allowable thermal resistance:

Rth =
$$\frac{60 - 30}{110}$$
 = 0.27 °C/W

© 1992 Square D All Rights Reserved

□ Minimum useful heat exchange surface area:

$$S = \frac{300}{0.27} = 1099 \,\mathrm{in}^2$$

Useful heat exchange surface area of the proposed wall mounted enclosure:

- □ Height: 24 in (600 mm)
- □ Width: 20 in (500 mm)
- **Depth:** 10 in (250 mm)

Recess Mounting To reduce power dissipated in the enclosure, the drive controller can be recess mounted in the back of the enclosure, with the heat sink on the outside. This arrangement necessitates a cut-out and a gasket kit. To obtain a temperature that does not exceed 140° F (60° C), the air inside the enclosure must be stirred by the addition of a fan with a flow rate of 100 CFM (44 dm³/s).

The minimum metal enclosure dimensions enabling the mounting of one drive controller with an internal fan in an external ambient air temperature less than 86° F (30° C) are given in Table 2-14:

Table 2-14	Minimum Metal Enclosure Dimensions
------------	------------------------------------

Gasket Kit Part No.	Drive Part No.	H in (mm)	W in (mm)	D in (mm)	Pi^[1] W
VY1-A451U1501	PØØVO4C	19.69 (500)	15.75 (400)	9.84 (250)	70
VY1-A451U4001	PØØVO4E	19.69 (500)	15.75 (400)	9.84 (250)	85
	PØØVO4G	27.56 (700)	15.75 (400)	9.84 (250)	105
VY1-A451U7501	PØØVO4J	23.62 (600)	15.75 (400)	9.84 (250)	80
VY1-A451D1101	PØØVO4K	27.56 (700)	19.69 (500)	9.84 (250)	95
VY1-A451D1501	PØØVO4M ^[2]	27.56 (700)	19.69 (500)	9.84 (250)	110
VY1-A451D3001	PØØVO4P ^[2]	35.43 (900)	27.56 (700)	11.81 (300)	150

[1]Pi = power dissipated in the enclosure by a recess mounted drive controller.

^[2]Gasket kit does not maintain dust- and damp-proof integrity of interior of 30 and 50 hp drive controller enclosures (bus capacitors protrude through heat sink).

MOUNTING IN DUST AND DAMP PROOF METAL ENCLOSURE (60 to 150 hp Drives)

Degree of protection: NEMA Type 12 (IP54).

Provide a stirring fan to circulate the air inside the enclosure and prevent hot spots on the drive controller.

□ See power dissipated by drive controllers, listed in Table 2-1 on page 10. Refer to Calculating Enclosure Size for Non-Ventilated Enclosures on page 28

Introduction	32
Adaptation for ±10 V Control	32
Dynamic Braking and Speed Regulation	33
Dynamic Braking Principles	33
Braking Resistor Kits	34
Ventilation Kit (1.5 to 50 hp drives)	35
Serial Communication Kit	36

INTRODUCTION The Omegapak Type P drive has the following option kits available for user installation:

- \Box Adaptation for ± 10 V Control
- **D**ynamic braking and speed regulation options
- Dynamic braking resistors
- Gasket kits for mounting in dust- and dampproof metal enclosures (1.5 to 50 hp drives only)
- □ Ventilation kit (1.5 to 50 hp drives only)
- □ Serial communication kit

Each option is described in the following sections.

ADAPTATION FOR ±10 V CONTROL

The ± 10 V control module, part no. VW3-A45108, is an interface that changes the ± 10 V input into a 0 to 10 V speed reference and a rotation direction (forward or reverse) control. It has the following characteristics:

- Dimensions (H x W x D):
 3.78 in (96 mm) x 1.89 in (48 mm) x 1.65 in (42 mm)
- □ Clip-on fastener onto ¬__ 1.38 in (35 mm) omega rail
- **□** Two summing analog input terminals, 22 and 23 (Ze = $28 \text{ k}\Omega$). The resulting speed reference is equal to the absolute value of the sum of references AE1 and AE2.
- □ The sign (+ or -) of the sum of the references determines the rotation direction.

The module may be enabled by a balanced 30 VDC external supply between terminals 25 (+) and 26 (-).

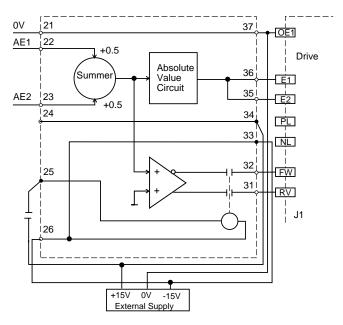


Figure 3-1 Block Diagram of ±10 V Control Module

DYNAMIC BRAKING AND	The dynamic braking and speed regulation options are grouped together and are available in three versions according to the drive power:				
SPEED REGULATION	Dynamic braking and speed regulation module (8803 PB01) for 460 V, 1.5 to 30 hp drives				
	Dynamic braking and speed regulation module (8803 PB02) for 460 V, 50 hp drives				
	Dynamic braking and speed regulation board (8803 PB03) for 460 V, 60 to 150 hp drives.				
	In all cases, the braking resistor is not supplied with the option and must be ordered separately. Four resistor kits are available for use with the three dynamic braking options. The resistor kits are open types intended to be mounted separately from the drive controller.				
Dynamic Braking Principles	When the frequency produced by the controller decreases rapidly, the motor be- haves like an asynchronous generator and produces a braking torque. The motor feeds energy back to the drive controller. The amount of energy depends on the rate of deceleration, the inertia of the moving mass and the resistive torque.				
	Since the controller cannot feed the energy back into the supply, this causes an increase in the voltage of the filter capacitors, which limits the braking effect, potentially causing the controller to fault on overvoltage. Part of the braking energy is dissipated as losses in the motor and the corresponding braking torque varying from 10 to 35% of the rated motor torque.				
	Dynamic braking allows a higher braking torque to be obtained and ensures dissi- pation of part of the braking energy in an external resistor. Dynamic braking con- sists of the following major components:				
	Power transistor that switches the braking resistor across the filter capacitor terminals				
	Control electronics				
	Separately mounted braking resistor and fuse				
	□ Low speed relay, which will control a brake if necessary: pick up at $f > 0$ Hz and motor I ≥ 0.7 rated drive controller current, drop out at $f \le 0$ Hz.				
	For Omegapak 1.5 to 50 hp drives, the dynamic braking modules contain all the control electronics, power transistor and low speed relay.				
	For Omegapak 60 to 150 hp drives, the power transistor is incorporated directly into the drive controller. The control electronics and low speed relay are located on the dynamic braking board.				
	Resistor kits containing resistor(s) and fuses are available for all drive controllers. See Table 3-1 on page 34.				

BRAKING RESISTOR KITS

Kits containing standard values of braking resistors and associated fuses are available. Table 3-1 lists the electrical and thermal characteristics of the resistor kits as well as the recommended kits for various drive controllers.

Resistor Kit No.		8803 PR01	8803 PR02	8803 PR02 (2 ea)	8803 PR04	8803 PR04 (2 ea)
Drive	PØØVO-4 460 ∨	C (1.5 hp) E (3 hp) G (7.5 hp)	J (15 hp) K (20 hp)	M (30 hp) P (50 hp)	Q (60 hp) S (100 hp)	T (125 hp) U (150 hp)
Standard Resistor Configuration ^[1]	PØØVO-4 460 V	50 Ω (2 ea.) in series	$6.4 \Omega (5 ea.)$ in series	2 PR02 kits in parallel ^[2]	10 Ω	2 PR04 kits in parallel ^[2]
Power Rating per Resistor ^[3]		50 W	57.6 W	57.6 W	1440 W	1440 W
Std. Resistor Value ^[4]		100 Ω	32 Ω	16 Ω	10 Ω	5 Ω
Fuse Value		1 A	3 A	3 A	12 A	12 A
Gould Shawmut Part No. ^[5]		TRS1R	TRS3R	TRS3R	TRS12R	TRS12R

Table 3-1 Standard Braking Resistors

^[1]Resistors supplied with kits are type PX1 for kits PR01 and PR02, and type TW27D for kit PR04.

^[2]When more than one kit is required to obtain the correct power and resistance values, connect the fuse and resistor supplied with each kit in series to form a group, then connect the groups in parallel.

^[3]Power ratings per resistor are calculated based on fuse current. Actual resistor power rating is 135 W for kits PR01 and PR02 and 7290 W for kit PR04.

^[4]Standard resistor value represents the total series resistance of the recommended resistor string.

^[5]Do not substitute for these fuses, since they can operate correctly at the DC voltages in this application.

Ventilation Kit

(1.5 to 50 hp drives)

The ventilation kit, part no. VY1-A05107, is comprised of a single phase stirring fan and mounting accessories. It is attached to the upper part of the drive controller. This arrangement reduces hot spots, allowing the controller to be used in an enclosure with a maximum internal temperature of 140° F (60° C).

The ventilation kit, shown in Figure 3-2, has the following characteristics:

- □ Attached to upper part of drive controller with 0.79 in (20 mm) standoffs, leaving an area free for wiring
- **Overall height:** 2.95 in (75 mm) + 0.79 in (20 mm) = 3.74 in (95 mm)

At least 2 in (50 mm) clearance must be provided above the fan for air flow.

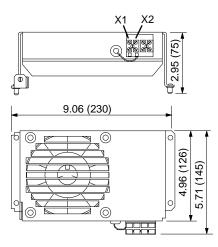


Figure 3-2 Ventilation Kit

The fan has the following characteristics:

- Given the set of the
- Dever supply (terminals X1-X2): 208 to 240 V, 50/60 Hz
- □ Current consumption: 125/105 mA

To access the top of the drive controller once the fan is installed, remove the two screws on the right hand side of the kit and pivot the kit away from the controller

SERIAL COMMUNICATION KIT

Designed for incorporation in modern automated system architectures, Omegapak Type PAC drives can be connected to an RS-485 standard multidrop bus. This option board (part no. 8803 PS01) is required for each drive on the bus.

The serial communication kit is supplied complete with accessories for mounting it onto the control board of the drive controller and an instruction bulletin.

This option enables data exchange via the following protocols:

- □ UNI-TELWAY[®]
- □ MODBUS[®]
- □ SY/MAX[®] PNIM

Via a single asynchronous serial link, a programmable controller or computer can control and monitor up to 28 Omegapak Type P drive controllers equipped with the communication option board.

The following data may be transmitted over the serial link:

- □ Operating mode (read and write): LOCAL or LINE
- □ Drive controller configurations and settings (read and write): ramp times, speed limits, voltage/frequency ratio, thermal (overload) protection, etc.
- □ Commands (read and write): run, frequency reference, braking, et.
- □ Signalling (read only): state and fault recording, motor current, thermal state, etc.

For further information, refer to the Serial Communication Kit Instruction Bulletin No. 50006-378-05.

Drive Selection	38
Available Motoring Torque	39
Continuous Duty	39
Overtorque Capability	39
Overspeed Operation ($f \ge 50/60 \text{ Hz}$)	39
Reduced V/f Operation	
Driving Torque Production Envelope	40
Thermal (Overload) Protection of the Motor	41
Intermittent Duty	42
Association with Different Motors	43
Motor Power Less Than or Equal to Controller Rated Power	43
Motor Power Greater Than Controller Rated Power	43
Motors in Parallel	43
Using a Brake Motor	44
Electric Brake Solenoid	44
Tapered Rotor Motor	44
Using a Synchronous Permanent Magnet or Wound-Field Motor	44
Using a Synchronous Reluctance Motor	44
Additional Motor Connected Downstream of the Drive Controller	44
Bypassing the Drive Controller	44
Adaptation to the Input Line	45
Line Inductors	45
Inductors Between the Drive Controller and the Motor	46
Recommended Three-Phase Inductors	46

DRIVE SELECTION The motor/drive combination must be adequately rated to:

- Overcome the load torque of the motor load over the entire speed range used
- **u** Supply the transient overtorque needed for the required acceleration
- □ Provide required braking torque for rapid deceleration either by DC injection braking or dynamic braking.

Depending on the type of machine load, certain considerations must be kept in mind:

- □ Constant torque load (conveyors): insure that the required starting torque is compatible with the AC drive controller available overtorque.
- □ Quadratic torque load (fans and centrifugal pumps): torque increases rapidly with speed and it may be necessary to limit the maximum speed to avoid exceeding the capabilities of the motor-drive combination.
- □ Constant power load (winders): check the speed range. If torque is highest at low speed, check the torque capability at the lowest speed and provide forced ventilation if necessary.

Overhauling load/high inertia: closely examine the required braking methods and oversize if necessary.

AVAILABLE MOTORING TORQUE Continuous Duty	For continuous duty reduced speed applications, motor torque derating may be necessary. This derating is linked to two causes:		
	□ Although the current waveform is very close to a sine wave, motor heating is slightly greater than that obtained by direct supply from the input line. The resulting torque derating is approximately 5%.		
	□ For self-ventilating motors, the ventilation produced by the internal shaft fan decreases as the speed is reduced. This necessitates derating of the maximum continuous torque capability of the motor. Generally, the required derating occurs at approximately 50% of nameplate motor speed. Since motor designs vary, the motor manufacturer should be consulted for the required derating for a specific motor.		
Overtorque Capability	The driving overtorque capabilities of a given motor are determined by: the m NEMA design category (Design B, Design D, etc.), no-load (magnetizing) cur of the motor at nameplate speed, maximum transient output current of the cont ler and the applied V/f at reduced speed.		
	□ For NEMA design B motors whose no-load currents are less than 58% of the motor nameplate current, the maximum overtorque capability is approximately 110% of motor rated torque with 110% of motor rated current.		
	□ With constant V/f excitation, the motor overtorque capability begins to decrease below 50% of motor nameplate speed. Improved low speed overtorque performance is possible by choosing the proper V/f selection.		
Overspeed Operation (f ≥ 50/60 Hz)	With an adjustable frequency controller, operation at speeds greater than motor nameplate speed may be possible. However, above some output frequency, the controller is incapable of producing additional output voltage. Generally, this frequency is 50/60 Hz. When operated in this region, the available continuous motor torque will begin to decrease along with the motor maximum overtorque capability. The motor manufacturer should be consulted concerning the continuous torque and overtorque capabilities of the particular motor.		

Reduced V/f Operation	Many centrifugal fans and pumps require driving torque which increases in propor- tion to the square of the speed. Such load types are sometimes called quadratic loads. Since the torque production ability of an induction motor decreases in pro- portion to the square of the applied motor V/f, it is possible, when driving quadratic loads, to linearly reduce the motor V/f as motor speed decreases and still have suf- ficient torque for satisfactory operation. When operated in this manner, constant motor slip is maintained throughout the operating speed range of the load.		
	Reduced V/f motor operation with quadratic loads can be advantageous.		
	□ Audible motor noise resulting from the controller PWM output voltage waveform at reduced speeds is significantly reduced.		
	Motor excitation losses should decrease resulting in more efficient motor op- eration at reduced speed.		
Driving Torque Production Envelope	Figure 4-1 and Figure 4-2 illustrate typical continuous torque and overtorque driv- ing capability for a typical self-ventilated NEMA Design B, 1.0 service factor mo- tor whose no-load current is less than 58% of the motor rated current. In Figure 4- 1, the motor is operated with reduced V/f excitation while in Figure 4-2 the motor is operated with constant V/f excitation. In addition, the controller rated output cur- rent is greater than or equal to the motor nameplate current and the controller tran-		

current.

For 1.15 service factor motors, the continuous torque rating is 1.0 times the motor rated torque from 50 to 100% of motor nameplate rated speed.

sient output current capability is no less than 110% of controller rated output

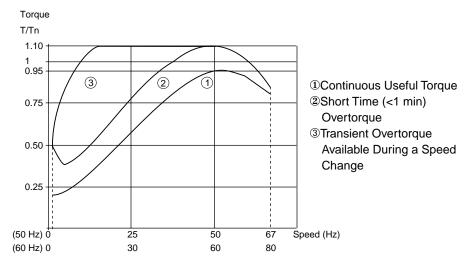


Figure 4-1 Operation with Quadratic Torque Load

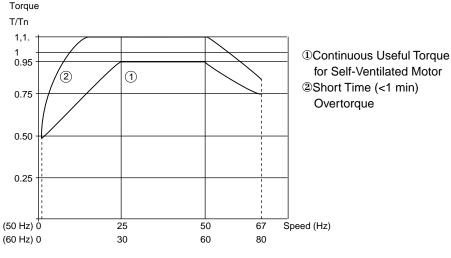


Figure 4-2Operation with Constant Torque Load

THERMAL (OVERLOAD) PROTECTION OF THE MOTOR

Indirect thermal (overload) protection of the motor is incorporated in the drive controller, taking into account:

- □ Current absorbed by the motor
- □ Motor speed (ventilation)
- \Box Ambient air temperature of 104° F (40° C)

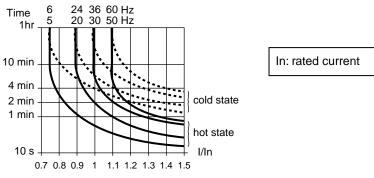


Figure 4-3 Thermal Trip Curves

INTERMITTENT DUTY

The controller can supply output current in excess of its rating for a finite duration of time. The allowable magnitude and duration of a non-periodic overload for a controller is defined by the transient output current and the thermal trip curves shown in Figure 4-3 on page 41. For this case, In equals the controller rated output current.

For intermittent (periodic) overloads, the controller overload period must be followed by a cool-down period as illustrated in Figure 4-4. The relationship between the magnitude and period of overload versus cool-down is given by the formula in Figure 4-5. The formula assumes operation at output frequencies of 50/60 Hz. For frequencies below 50/60 Hz, the rated current, In, must be decreased by the amount shown in Figure 4-3 to prevent tripping the thermal (overload) protection. If the thermal (overload) protection is set for a force-cooled motor, no reduction is required.

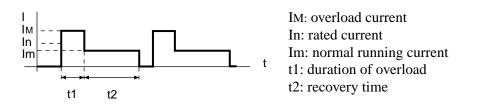


Figure 4-4 Intermittent Duty

The curves in Figure 4-5 can be used to determine the ratio between the overload duration and the operating time at 80% of the rated current at 50/60 Hz. For example, following an overload of 1.1 In for 40 seconds, it would require 20 seconds at 0.8 In to return to the previous thermal state.

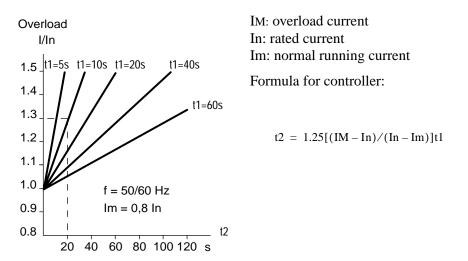


Figure 4-5 Overload Curves for Controller

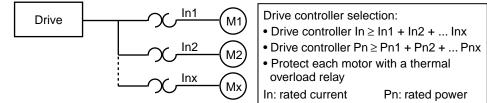
ASSOCIATION WITH DIFFERENT MOTORS

When Motor Power is

Less Than or Equal to

Controller Rated Power

Omegapak Type P drive controllers are designed to drive motors with a corresponding power rating. However, they can be used with motors having different power ratings as long as certain precautions are observed. Depending on the motor characteristics and performance necessary for the application, special configuration may be necessary.


Omegapak Type P drive controllers are selected on the basis of required output current and power over the expected frequency range. Under no circumstances should the motor continuous power or current requirements for a given load situation exceed the drive controller's continuous output current and power rating.

It is permissible for motor power to be less than or equal to the drive rated power. However, since compensation is not at the optimum level, this can lead to a reduction in continuous torque at low speed. Adjustments during set up may be necessary.

If the motor rated current is less than 50% of drive rated output current, correct adjustment of motor thermal protection is impossible and nuisance tripping of the controller may result. In this case, use standard external protection (overload relay or thermal sensor).

When Motor Power is Greater Than Controller Rated Power

Magnetizing current peaks generally limit this combination to the motor power immediately above the drive rating. Compensation is not at the optimum level, and adjustments during set up may be necessary. The motor current must remain less than or equal to the drive controller's rated current. In addition, the power required by the load should not exceed the power rating of the controller. If necessary, install a three-phase inductor between the drive controller and the motor (page 46).

When motors are in parallel, compensation is not at the optimum level and adjustments during set up may be necessary. If the motors have different power ratings, the ratio adjustment can only be a compromise. If the load is to be shared between the motors, adjustments during set up may be necessary.

If there are three or more motors in parallel, installation of a three phase inductor between the drive controller and the motor is recommended (page 46).

Motors in Parallel

Using a Brake Motor Electric Brake Solenoid	Make sure that the brake winding is brought out to terminals, without a common point to the stator. The brake should be supplied separately at its rated voltage and switched on simultaneously with the motor.
Tapered Rotor Motor	The brake on a tapered rotor motor is released by the magnetic field of the motor. This kind of motor can be used with a frequency inverter, but requires special adjustments.
Using a Synchronous Permanent Magnet or Wound-Field Motor	 It is possible to operate a synchronous motor as long as the following conditions are met: Slip compensation is not used. External overload protection (overload relay or thermal sensor) is used. Operation only at constant V/f. Appropriate field excitation and protection is provided for externally-excited motors.
Using a Synchronous Reluctance Motor	It is possible to operate a synchronous reluctance motor as long as adjustments are made during set up.
Additional Motor	When connecting an additional motor, comply with the timing sequence shown in

Additional Motor Connected Downstream of the Drive Controller

 \Box t1 = 20 ms

Figure 4-7:

 \Box t2 = time required for motor residual voltage to reach 10% of motor nameplate voltage.

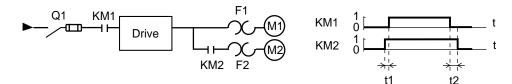


Figure 4-7 Connecting an Additional Motor

If the motor is to be connected to the controller while the controller is running, the sum of the running motor current(s) plus the expected starting current of the switched motor must not exceed 90% of the controller's transient output current rating.

Bypassing the Drive Controller When bypassing the drive controller or inserting an isolation contactor between the controller and motor, comply with the timing sequence shown in Figure 4-8:

- \Box t1 = 20 ms
- \Box t2 = time required for motor residual voltage to reach 10% of motor nameplate voltage.

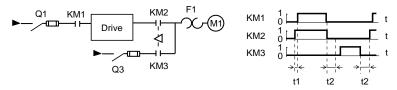


Figure 4-8 Bypassing the Drive (Direct Coupling)

ADAPTATION TO THE INPUT LINE

If a suitable input line is not available, the drive controller can be supplied via a three-phase transformer or autotransformer, rated as shown in Table 4-1.

Drive	Transformer Rating
PØØVO4C	2 kVA
PØØVO4E	4 kVA
PØØVO4G	9 kVA
PØØVO4J	16 kVA
PØØVO4K	22 kVA
PØØVO4M	32 kVA
PØØVO4P	52 kVA
PØØVO4Q	75 kVA
PØØVO4S	100 kVA
PØØVO4T	125 kVA
PØØVO4U	155 kVA

Table 4-1 Suitable Transformers

LINE INDUCTORS

Use line inductors in the following circumstances:

- □ Input lines subject to interference from other loads (interference, overvolt-age).
- □ Drive controller supplied by a line with very low impedance (fed from power transformers with more than 10 times the drive power).
- □ Large number of adjustable frequency drives installed on the same line.

In the cases above, using line inductors provides the following advantages:

- □ Increased protection of input rectifier bridge against overvoltage and spikes.
- **□** Reduction of the current absorbed by the drive controller at full load.
- □ Reduction of the harmonic current load on the power factor correction capacitors, when used.

The addition of inductors between the drive controller and the motor is recom-Inductors Between the mended in the following circumstances: **Drive Controller and the** Motor □ Wire connecting drive controller and motor is longer than 320 ft (100 m). □ For PØØVO4T and PØØVO4U, if the drive-motor connection wires are less than 82 ft (25 m) (to ensure protection against short circuits between output phases). □ More than three motors being controlled in parallel. □ Motor has more than six poles, with a high power factor and low stator inductance. □ Motor with a higher power rating than the controller power rating. In the cases above, using line inductors enables reduction of: □ Values of the current peaks absorbed by the motor. Ground leakage interference currents. **□** Radio interference created by the motor connection wiring. □ Vibrations and motor noise. The inductors listed in Table 4-2 can be used between the input line and drive con-**Recommended Three**troller and/or between the drive controller and the motor. **Phase Inductors**

Table 4-2	Suitable I	nductors		
Inductor Characteristics		Drive	Drive Ratings	
Inductance	Amperes (continuous) ¹		Horsepower	Voltage
5 mH	5 A	PØØVO4C PØØVO4E	1.5 hp 3 hp	460 V 460 V
1.7 mH	15 A	PØØVO4G	7.5 hp	460 V
0.80 mH	30 A	PØØVO4J PØØVO4K	15 hp 20 hp	460 V 460 V
0.6 mH	40 A	PØØVO4M	30 hp	460 V
0.35 mH	70 A	PØØVO4P	50 hp	460 V
0.17 mH	150 A	PØØVO4Q PØØVO4S	60 hp 100 hp	460 V 460 V
0.150 mH	250 A	PØØVO4T PØØVO4U	125 hp 150 hp	460 V 460 V

Table 4-2 Suitable Inductors

¹ Continuous rms current rating. To prevent inductor saturation, inductor peak current rating must be 3 to 4 times the continuous current rating.

Drive Controller Settings	48
Dialog Unit	48
Drive Parameters	
Operation Parameters	49
Adjustment Parameters	49
Configuration Parameters	49
Display of Faults	

DRIVE CONTROLLER SETTINGS	The parameters of the Omegapak Type P drive controller are factory preset to meet the most common application requirements.
	Make sure the preset values are compatible with your requirements. If they are:
	 Check the drive controller connections (see Figure 2-10 on page 24). Close and secure all enclosures. Be sure the dialog unit CONFIG switch is set to 1 and AUTOEST switch is off.
	4. Apply power to the controller.
	If the parameter preset values are not compatible with your requirements, readjust the settings as described in this chapter.
DIALOG UNIT	The parameter settings are controlled by the dialog unit which is on front of the control board and is accessible without removing the front cover by lifting the protective flap.

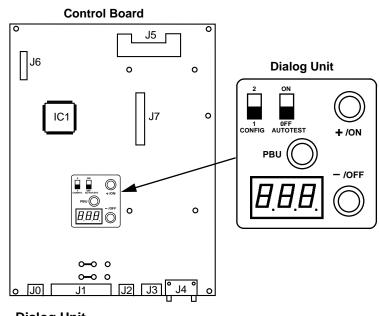


Figure 5-1 Dialog Unit

DRIVE PARAMETERS

The following sections describe the parameters available on the Omegapak variable torque drives.

Operation Parameters	FrH		Frequency reference (Hz)
	LEr		Motor current (A)
	LHr		Motor thermal state (percentage of nominal state)
Adjustment Parameters	Πϲϲ	dEc	Acceleration and deceleration ramps (seconds)
	LSP	HSP	Frequency thresholds: low and high speeds (Hz)
	Frl	Fr2	Skip frequencies
	ШFг		Voltage/frequency ratio correction (code "n" or "P")
	IEH		Adjustment of motor thermal (overload) protection (A)
	ШLп		Line voltage
Configuration Parameters	Fr5		Nominal input line frequency: 50/60 Hz
	гE		Current reference: 0-20 mA / 4-20 mA / 20-4 mA
	dFr		Skip frequency bandwidth
	5LP		Slip compensation on or off
	d = 5		DC stop

	гы	Ramp blocking
	F5E	Fast stop
	FLS	Freewheel stop
	Øbr	Overbraking detection
	<i>Π</i> ⊔ <i>Ε</i>	Automatic restart
Display of Faults	D5F	Supply overvoltage
	U5F	Supply undervoltage
	PhF	Phase failure
	DεF	Overcurrent
	ПЬF	Overbraking
	DhF	Drive overtemperature
	ΠLF	Motor overload
	InF	Internal connection fault

An autodiagnostic sequence is incorporated in the drive. This enables monitoring of the drive's main functions and the display of faults at

- □ Internal connections
- □ Control logic inputs
- **D** Power boards and modules
- Control board

Α

AC drive components	2
AC input lines	2
acceleration ramp	49
adaptation for ± 10 V control	32
adjustment parameters	49
altitude	12
analog output 1	21
analog output 2	21
autodiagnostic sequence	50
automatic restart	50

Β

block diagram	
± 10 V control module	32
1.5-3 hp controllers	15
1.5-50 hp controllers	17
60-150 hp controllers	19
boards	
see circuit boards	
brake motor	44
braking resistance	21
braking to standstill	12
bridge rectifier	2
BTU per hour	13
bypassing controller	44

С

catalog number interpretation	10
current limiting device 15,	17
circuit boards	
layout of	14
circuit diagrams	22
components	14
configuration parameters	49
constant torque loads	41
contactor 23,	24
continuous duty	39
continuous torque capability	40
control fuses 23,	24
control inputs supply	21
control station enclosure	23
control transformer 15,	17
current	13
current reference	49
	-

D

DC braking control input	21
DC stop	49
deceleration ramp	49
degree of protection	12
design and operation	
1.5-3 hp controllers	14
1.5-50 hp controllers	16
60-150 hp controllers	18
dialog unit	48
dimensions	
1.5-50 hp controllers	26
1-40 hp controllers	26
60-150 hp controllers	27
enclosure	29
display of faults	50
dissipated power	13
drive overtemperature	50
dust and damp proof	
see NEMA Type 12	
dynamic braking	12
dynamic braking resistor kit	s 34

Ε

_

electric brake solenoid	44
electrical creepages	12
electronic thermal protection	12
enclosures	
NEMA Type 12	28
environment requirements	12
equipment requirements	
1.5-15 hp controllers	23
100-150 hp controllers	24
20-60 hp controllers	23
_	
F	
F	

fan, ventilation	29
fast stop	50
faults	50
fault withstand current	13
filter capacitor circuit	2
filter capacitors	15, 17
filtered DC voltage	21
forward control input	21
freewheel stop	50

frequency range frequency reference frequency resolution frequency threshold fuse carriers fuses	12 49 12 49 23 34
G	
gasket kit	29
Н	
high speed humidity	12 12
• • •	1 -

inductors	45
input 1	21
input 2	21
input 3	21
input line supply overvoltage	12
input line supply undervoltage	12
intermittent duty	42
internal connection fault	50
inverter	2
IP54	
see NEMA Type 12	
isolation contactors	44

Κ

kits

see options

13
45
49
12

_

Μ

measurement board	17
mechanical brake	
control relay	21
microprocessor	
control board 15,	17
MODBUS	36
motor connected downstream	44
motor current	49
motor overload	50
motor power	13
motor protection	12
	49
motor thermal state	49
motors	
installation 43-	44
multidrop serial link	12

Ν

negative supply	21
NEMA Type 12 28,	30
nominal input line frequency	49
nuisance tripping	43

0

Omegapak Type P AC Drive	
benefits	3
components 1	6, 18
dimensions and weights	26
equipment requirements	23
industrial applications	3
option kits	32
parameters	49
principle of operation	2
technical characteristics	13
terminal wire range	24
operating temperature	12
operation parameters	49
options 11,3	2-36
output connections	21
output voltage 1	2, 21
overbraking	50
overcurrent	50
overload protection	
see thermal protection	

overspeed operation	39
overtorque capability	39, 40

Ρ

parameters	
operation	49
adjustment	49
configuration	49
preset values	48
PC boards	
see circuit boards	
phase failure	50
plug-in fuse carrier	15, 17
pollution	12
potentiometer	23
power	13
power transistors	2
product selection	10
push buttons	23
push buttons	23

Q

quadratic loads	

R

ramp blocking	50
ramps	12
rated output current	13
recess mounting	29
rectifier	15, 17
reduced V/Hz operation	40
reference response time	12
relays	
fault	21
thermal overload	43
reverse control input	21
reversing	12
rotation direction	32

S

safety switch23, 24serial communication15, 17, 36short circuit protection12single phase control supply21

39	sinusoidal pulse width	
40	modulation	2
	skip frequencies	49
	skip frequency bandwidth	49
	slip compensation	49
	specifications	13
	speed reference 12	, 21
49	speed reference current	21
49	speed reference voltage	21
49	squirrel cage induction motors	2
48	storage temperature	12
	supply overvoltage	50
	supply undervoltage	50
50	supply voltage	13
. 17	suppressor 23,	, 24
12	SY/MAX PNIM	36
23	synchronous permanent	
13	magnet motor	44
2	synchronous reluctance motor	44
10	system dialog	12
23		

40

tapered rotor motor	44
± 10 V control module	32
terminal strip	
1.5 to 150 hp controllers	21
terminals	
1.5-50 hp controllers	20
60-150 hp connections	20
thermal protection	41
three-phase inductors	46
three-phase power supply	21
torque	39
torque/overtorque	12
transformer 23, 24	4, 45
transient output current	13
transistor control board	17
transistor inverter bridge 1	5,17
transistor power board	15
<u> </u>	

U

UNI-TELWAY

36

V

ventilation	
NEMA Type 12	28
ventilation kit	35
Voltage/frequency ratio	49

W

weights	
1.5-50 hp controllers	26
60-150 hp controllers	27
wiring	
terminals 24–25	
wire range 1.5-15 hp	24
wire range 20-150 hp	25
wound-field motor	44

Notes: