
Tuning Servomotors
Chuck Lewin, CEO of Performance Motion Devices

T
Introduction

o paraphrase an adage, there are two types of motion
control engineers, those that are comfortable tuning a
servo loop, and those that aren’t. And if you are one of

those engineers that aren’t comfortable, you in turn, have two
options. The first is to use a non-servo device such as a step mo-
tor, and the second is to get comfortable!

Whether you are a relative novice, or an experienced hand with
servo tuning, this article will help. It provides an overview of
PID (proportional, integral, derivative) based servo loops, and
introduces two standard manual tuning methods that work well
for a large variety of systems. It will also provide an introduction
to the increasingly popular technique of auto-tuning, which, de-
spite the name, isn’t necessarily as automatic is it may seem. Fi-
nally, we will look at advanced servo techniques such as feed-
forward and frequency domain bi-quad filtering.

Servoing up an ace

The two servomotors that engineers most commonly use for
positioning are the DC servomotor, which uses mechanical
brushes to commute the motor, and the brushless DC motor,
also known as the PM (permanent magnet) brushless motor,
which is commutated electronically by external circuitry.

Unlike step motors, which move in discrete position steps, servo-
motors have no built-in sense of where they are, and thus re-
quire a feedback device such as a quadrature encoder to
provide position information. The servo loop, also called a
compensator, has the job of keeping the servomotor at the de-
sired position. It does this by comparing the desired position
at any given moment with the actual motor position from the
feedback device, and applying corrective motor commands.
The better the servo loop performs, the more accurately the
motor will track the desired position under a variety of loads
and motion profiles.

It’s all PID

Theorists and engineers have developed a number of servo
compensation schemes over the years, but the overwhelming fa-
vorite is the PID loop. Several different implementations of the
PID loop exist however, and it is not uncommon for different
vendors to use different approaches.

Broadly speaking, PID controllers fall into two groups; the
first is the “PID position loop,” and the second is the “cascad-
ed position/velocity loop.” Figures 1A and 1B, on the follow-
ing page, provide an overview of these two schemes.

The more common PID position loop requires us to determine
three values, the position loop gain, (Kp) the Integral gain (Ki)
and the derivative gain (Kd). Even for this “basic” servo system
however, modern motion vendors provide a bevy of additional
options. The most common of these are an integrator limit,
feed-forward gains, motor bias, and frequency-domain filtering
such as notch filters or band-pass filters. Several of these con-
cepts will be discussed in later sections of this article.

Cascaded position/velocity loops are tuned inside-out, and ei-
ther four or five parameters are set by the user. The inner veloc-
ity loop (usually a PI controller) is tuned first, and then the outer
position loop (generally either a PI or PID controller) is tuned.
While we will not focus on the cascaded position/velocity loop
in this article, it shouldn't be hard to adapt some of the tech-
niques presented to this type of loop. Note also that if you are
using an external amplifier that provides velocity control, you al-
ready are, in effect, utilizing a cascaded position velocity loop.
Generally speaking the type of amplifier you are using has an im-
portant effect on position loop tuning, so you should make sure
that the complete system controller, including whatever control
loops may exist in the amplifier, are taken into account.

Equations 1 & 2 below provide the basic form of the PID filter
equation in both the continuous time domain and the discrete
time domain. For anyone using a DSP or microprocessor to
construct a servo loop, only the discrete time form applies. The
continuous form is used in system modeling and analysis, and
can be used as a representation of the discrete time form as long
as the sampling rate is high compared to the system bandwidth.

Equation 1. Continuous time form PID

where E(t) is the position error at time t

Equation 2. Discrete time form PID

where En is the position at sample time n

Using your in-tune-ition

One of the reasons PID compensators are so popular is that it
is easy to conceive of how each term contributes to the overall
output. The D (derivative) term introduces resistance or drag,
the P (proportional) term introduces a linear restoring force,
and the I (integral) introduces a time-dependent windup term.

Output t() KpE t() Ki E t() Kd
dE t()

dt
-------------+

0

+

∫+=

Esum Esum En+=

Output n() KpEn KiEsum Kd En En 1––()++=

2

The first manual tuning method that we will discuss works di-
rectly in conjunction with this “intuitive” notion of the PID
loop. Referred to as the step-response method, it measures the
response of the servo system to an instantaneous (within one
servo cycle) change in position. To make this method work, or
for that matter any manual tuning method, we need an accurate
performance trace facility to display the results of our moves.
See INSET for more information. For step-response tuning
we need to display desired position, actual position, and posi-
tion error (the difference between these two).

Here is the basic approach used with step-response tuning: Ini-
tialize the I term to zero, and set the D term to a small non-
zero value. Increase P from zero until the system substantially
overshoots. Then increase D until the oscillation is “critically
damped.” Figures 2A, 2B, and 2C show approximate traces of
underdamped, overdamped, and critically damped step re-
sponses. Continue this process until you find values that have
a high P while still being critically damped

Although very easy to use, this method has the problem that in-
creasing D will cause the optimum value of P to change, which
in turn changes the optimum value of D, etc. This requires a
number of iterations to get to stable values. In general terms this

is because the D term of a PID operates at the highest frequency
zone, the P term at a middle point, and the I term at the lowest
frequency zone. What would be better is if we could first tune
the highest frequency component, then move to the middle-
range value, and finish with the low frequency part.

You’re in the zone

This is exactly what “zone-based tuning” does, the second
manual method that we will introduce. “Zone-based” refers
to the frequency zones of the P, I, and D terms, and is adapt-
ed from George Ellis’ excellent book, Control System Design
Guide.

In this method we will plot velocity versus time and the desired
profile will be a step function of the velocity (not the position).
Set the profile so that it accelerates instantaneously between a ve-
locity of zero and a fixed velocity, and back to zero. Leaving the
P and I terms at zero, increase D until the actual velocity profile
closely matches the desired velocity profile. Do not worry about
whether the destination positions match, you are only examining
differences in velocity (velocity error) at this stage. Figure 3 shows
a well-tuned D term using this approach.

Figure 1. PID position loop (1A); cascaded position/velocity loop (1B)

Position
command

Position
error

Controller

To amplifier

Actual position
from encoder

Position
command

Position
error

Controller

To amplifier

Actual position
from encoder

P

I
D

Velocity
command

Velocity
error

Actual velocity
from encoder or
tachometer

+– +–

P

I

+
+

++++–

P

I

D

1A

1B

Position and cascaded position/velocity loops are two common PID controllers. The most significant
difference between them is how they are turned: The position loop alters PID terms iteratively,
while the cascaded loop is turned inside out.

+
+

3

Now set up your profiler so that you are using moves with accel-
erations and velocities typical for your application, and change the
capture facility so that it plots the desired position, actual position,
and position error. Increase P until the servo error is minimized.
At some point as you increase P the motion may have high over-
shoot, or become unstable, at which point you should back off of
this value by at least 20% for the final value.

Zone-based tuning has a number of advantages over step-re-
sponse tuning. For one, it is less iterative, because it tunes the
PID terms in order of the frequency response domain. Second-
ly, it allows you to utilize real motion profiles with ramps, rather
than unrealistic position jumps. In all cases, whether using step-
response or zone-based manual tuning, check the motion in
both the positive and negative direction to make sure the gain
parameters work well in both directions.

Hardware trace key to high performance
motion analysis
Servo tuning has long relied on visual feedback to let engineers determine how well
the motion parameters are working. Historically this was done with a standard
electronic oscilloscope, but in the past ten years or more, motion analysis has
typically occurred on a PC. These PC-based systems have two major elements, the
first is a software display and analysis package which runs on the PC, and the
second is a hardware motion controller that provides the ability to capture real-time
servo data and upload it to the PC.

The Pro-Motion package, provided by Performance Motion Devices, is typical of
software programs for motion analysis. It provides the ability to view four traced
variables simultaneously, and has numerous other features such as one-time or
continuous rolling mode, programmable capture interval and storage to file. Pro-
Motion works with any motion controller that utilizes a Magellan Motion Processor.
The motion processor is programmed before-hand to continuously store “traced”
parameters into a hardware memory buffer. Once trace is complete, this buffer is
then uploaded into Pro-Motion for display and analysis.

Compared to older “polling” methods, this hardware trace approach has the
advantage that captured data elements are guaranteed to be synchronous with the
servo loop. This improves accuracy and eliminates aliasing between the servo loop
rate and the software polling rate.

Figure 3. Driving waveform — zone-based tuning

For a given servo, varying P and D terms produces damped responses.
The goal is to match the actual position to the desired position
as closely as possible (as the critically damped response shows),
minimizing error between them.

Desired
position

Actual
positionPo

si
tio

n

2A

2B

Time

Critically damped response

Overdamped response

2C Underdamped response

Figure 2. Driving waveform for intuitive tuning

4
I beg to integrate

Conspicuously absent from this discussion of manual tuning
methods is Ki, the integral gain. In general, we want to keep the
integral term as small as possible, because it is a direct contributor
to servo instability — or as it is expressed in servo analysis terms,
to a loss of phase margin. Typically, in manual tuning methods, Ki
is the last parameters set, and is used to offset DC biases on the
load such as gravity, or to bring final position errors to a very small
value, or to reduce position errors at higher velocities.

At this point it is important to discuss the idea of tuning your pa-
rameters toward a certain goal. It is a fallacy to believe that one set
of PID parameters are optimized for all uses of a motion system.
Some systems must have very safe, conservative servo parame-
ters. Others can have aggressive parameters which optimize a spe-
cific characteristics such as point-to-point transfer time. Others
emphasize having a very small errors during the move, etc.

Remember that what you are optimizing is an important factor in
determining the best servo parameters. This fact, although ob-
vious, is often overlooked both by motion control end-users,
and vendors that provide auto-tuning programs for determining
the “best” values.

Automatic for the people

In general, manual tuning methods rely on subjective assessments
such as “over damped” or “under damped.” Automatic tuning,
generally referred to as “auto-tuning,” holds out the promise of
making this process more scientific and repeatable. Better still, au-
tomatic tuning places much (but not all) of the burden of tuning
onto an algorithm.

Auto-tuning methods tend to use academically researched tun-
ing methods. Of these, Zeigler-Nichols (ZN) is the best known.
Unlike the manual methods described above, this method as-
sumes a certain mathematical model to describe the process to
be controlled, and then performs tests which are translated
through a series of rules into the PID parameters.

The first proposed version of Zeigler-Nichols was not opti-
mized for automatic tuning however, and thus modified ZN
methods were developed. One such approach is known as the
“frequency response method.” This method replaces the PID
with a relay (all on positive, and then all on negative) controller
during tuning. Using this approach the servo loop becomes os-
cillatory, and the measured frequency and gain of this oscillation
are used to determine the PID parameters.

Figure 4. Sample auto-tuning process

5
Despite all this, there is relatively little that has been published regard-
ing implementation of auto-tuning procedures for servo loop tuning.
This may be due to the fact that most of this work has been done by
vendors which consider the algorithms proprietary, or it may be due
to the fact that interest in auto-tuning has increased relatively recently,
as inexpensive computing power has become available.

Figure 4 provides a flow chart for a specific auto-tuning proce-
dure used in conjunction with PID controllers. This method
uses three phases. The first phase is used to derive a value for D,
using a method similar to that used in zone-based tuning. The
second phase derives values for P and I using the relay test ap-
proach described above. And the third phase uses information
acquired about the system to allow the user to hand-optimize
the results, but using inputs such as “quieter versus noisier” and
“aggressive versus less aggressive” to provide meaningful yet
easy-to-understand control inputs.

The care and feeding of your
servo...forward

In a perfect world, every force that your motor experiences
could be predicted in advance. In the real world however, some
forces are predictable, while others, such as loads that are larger
or smaller than expected, or motor characteristics that change
over time, are not. In fact, one of the most valuable aspects of
servo control is that even if we know nothing at all about the
motor or the load, by using techniques such as those described
above, we can still develop passable PID parameters.

But if we do know something about the motor or the load, it is
possible to improve system performance further, even for a well-
tuned system, by “feeding-forward” offsets directly into the out-
put of the servo loop. In the context of motion control, this tech-
nique is generally used with the profile generator to provide
velocity feed-forward and acceleration feed-forward controls.

Velocity feed-forward is useful to compensate for any viscous
friction or velocity-proportional lagging force. This includes
some types of friction forces on the motor or load. It is also
common if a voltage-mode amplifier (one without a torque
loop) is used, because in these types of amplifiers back-EMF in-
troduces a velocity-proportional lag.

Acceleration feed-forward is useful to compensate for any accel-
eration-proportional lagging force. This includes, in theory, all
hardware with non-zero inertia, because basic physics dictates
that if we change velocity, the object will resist this change, and
this resistance will show up as an acceleration-proportional lag.

Figure 5 shows a plot of position error versus time for a system
that exhibits velocity and acceleration-dependant characteristics,
along with the position error after application of velocity and ac-
celeration feed-forward gain values.

Practically speaking, feed-forward only works if inertia, friction,
and other system forces can be predicted. Many motion systems
have a variable load, or friction forces that change dramatically

over the expected operating temperature range or product lifetime.
Be sure that feed-forward gains that are helping you under one set
of conditions are not hurting you for a different set of conditions.

Equation 3. Velocity feedforward

Frequen-cy asked questions

Many modern servo filters provide some facility for frequency-
dependant filtering. This is useful for compensating for mechan-
ical systems that have a resonance at a certain frequency or
speed, or to reduce high frequency noise.

The most common implementation of such a filter is known as
a bi-quad filter, shown in figure 6. By choosing the right values
for A1, A2, B0, B1, and B2 this filter can function as a notch fil-
ter, band-pass filter, high or low-pass filter. If you are not famil-
iar with use of a bi-quad filter, there are a number of facilities
that provide information including the website www.octave.org.
This website includes a tool that lets you calculate values for A1,
A2, etc. based on the frequency filtering characteristics you want
for your system.

Outputn Outputn Kvff Vn Kaff An++=

These plots of position error vs. time exhibit velocity and acceleration-
independent characteristics. Adding both velocity and acceleration feedforwa
gains greatly reduces servo lag and position error.

5B

5C

Desired
velocity

Servo lag

V
el

oc
ity

Time

5A Uncorrected

Velocity feedforward added

Velocity & acceleration feedforward added

Figure 5. Effects of adding feedforward

6

Performance Motion Devices, Inc

55 Old Bedford Road
Lincoln, MA 01773
e-mail: info@pmdcorp.com

www.pmdcorp.com

About Performance Motion Devices

Performance Motion Devices (PMD) is the recognized world leader
in motion control ICs, cards, and modules. Dedicated to providing
cost-effective, high performance motion systems to OEM customers,
PMD utilizes extensive in-house expertise to minimize time-to-
market and maximize customer satisfaction.

Prodigy, ION, Magellan, Navigator, Pilot, Pro-Motion, and C-Motion are trademarks of Performance Motion Devices, Inc. All other trade
names, brand names, and company names are the property of their respective owners.

© 2007 Performance Motion Devices Inc.

Equation 4. Bi-quad filter

where: Yn is the filter’s output at time n
Xn is the filter’s input at time n
K is a positive scalar
B0, B1, B2, A0, A1 are programmable biquad coefficients.

Conclusion

Servo tuning need not be more difficult than other typical mo-
tion tasks such as sizing a motor. There are a number of stan-
dard manual methods available, two of which, step-response
tuning and zone-based tuning, are discussed in this article. Auto-

tuning holds out the promise of eliminating human involvement
in the process of servo tuning, but at present, most auto-tuning
packages are designed to provide workable initial values, which
are then further hand-optimized for a specific application.

Once your basic PID parameters have been determined, tech-
niques such as feed-forward, and bi-quad filtering can be used
to further improve performance, or increase smoothness.

Regardless of the process by which you arrive at your tuning pa-
rameters, make sure that you exercise your system over the com-
plete load range expected for your application, and if possible,
on both new and older hardware to insure that your system will
run correctly under real-world conditions.

Yn K B0Xn B1Xn 1– B2Xn 2– A1Yn 1– A2Yn 2–+ + + +()=

Figure 6. Biquad algorithm flow

Input
X

Bo

+ Σ

KScalar

Z-1

X

X

B1

B2

++ + + +

Z-1

Z-1

X

X

A1

A2

Z-1

To calculate a biquad filter’s output, one must combine user-programmed coefficients
A1, A2, B0, B2, and K with current and previous input and output values.

Output
X

