MVH - VARIABLE HELIX END MILLS Speed and Feed Data

		Chip Load per Tooth			
Material	SFM	1/8"	1/4"	1/2"	1"
Aluminum Alloys	1200	.0010	.0020	.0040	.0080
Carbon Steel	300-600	.0010	.0015	.0030	.0060
Cast Iron	350-550	.0010	.0015	.0030	.0060
Copper Alloys	500-900	.0010	.0020	.0030	.0060
Steel - Annealed	350-500	.0010	.0020	.0030	.0050
Steel - Rc 18-24	150-500	.0004	.0008	.0015	.0045
Steel - Rc 25-37	125-200	.0003	.0005	.0010	.0030
Stainless Steel - Free Machining	250-400	.0005	.0010	.0020	.0030
Stainless Steel - Other	150-300	.0005	.0010	.0020	.0030
Inconel/Monel	60-100	.0005	.0010	.0015	.0030
Titanium	175-300	.0005	.0008	.0015	.0030

All speeds and feeds are suggested starting points. They may be increased or decreased depending on machine condition, depth of cut, finish required, coolant, etc.

		Chip Load per Tooth			n	LIST OF SYMBOLS		
Material	SFM	1/8"	1/4"	1/2"	1"			
Aluminum Alloys	125-250	.0010	.0020	.0025	.0030	F = NUMBER OF FLUTES		
Magnesium	125-250	.0010	.0020	.0025	.0030	D = DIAMETER OF CUTTER		
Copper	75-100	.0008	.0015	.0030	.0060	R.P.M. = REVOLUTIONS PER MINUTE		
Brass	85-110	.0008	.0015	.0030	.0060	S.F.M. = SURFACE FEET PER MINUTE		
Bronze	75-100	.0008	.0015	.0030	.0060	I.P.M. = FEED RATE: INCHES PER MINUTE		
Cast Iron	100-125	.0008	.0015	.0025	.0050	I.P.R. = FEED RATE: INCHES PER REVOLUTION		
Cast Steel	75-100	.0008	.0015	.0025	.0050			
Malleable Iron	80-120	.0008	.0015	.0025	.0050			
Stainless Steel						MACHINING FORMULAS		
Free Machining	75-90	.0005	.0007	.0012	.0020			
Other	50-75	.0005	.0007	.0012	.0020	S.F.M. = 0.262 x D x R.P.M.		
Steel						$3.F.W. = 0.202 \times D \times R.F.W.$		
Annealed	100-125	.0010	.0020	.0040	.0060	R.P.M. = 3.82 x S.F.M.		
Rc 18-24	75-100	.0070	.0012	.0030	.0050	D		
Rc 25-37	40-75	.0005	.0010	.0020	.0040			
Titanium						I.P.R. = I.P.M. or CHIP LOAD x F		
Up to Rc 30	40-75	.0005	.0012	.0025	.0050	R.P.M.		
Rc 30+	20-25	.0005	.0010	.0020	.0035	к.г.wi.		
High Temp Alloys						I.P.M. = R.P.M. x I.P.R.		
Austenitic	12-20	*	.0007	.0015	.0030	I.F.WI K.F.WI. X I.F.K.		
Ferritic	50-75	.0004	.0007	.0020	.0050	CHIP LOAD = I.P.M. or I.P.R.		
Nickel Base	20-25	.0004	.0007	.0015	.0030	$\frac{\text{CHIP LOAD} = \underline{1.P.M.}}{\text{R.P.M. x F}} \qquad \text{or} \underline{1.P.R.}$		
Cobalt Base	8-15	*	.0007	.0015	.0030			

ROUGHING END MILLS Speed and Feed Data