
Dive Into Greasemonkey

Table of Contents
Dive Into Greasemonkey...1

Chapter 1. Getting Started..2
1.1. What is Greasemonkey?..2
1.2. Installing Greasemonkey...3
1.3. Installing a user script..4
1.4. Managing your user scripts..5

Chapter 2. Your First User Script..7
2.1. Hello World...7
2.2. Describing your user script with metadata...8
2.3. Coding your user script..10
2.4. Editing your user script..12

Chapter 3. Debugging User Scripts..13
3.1. Tracking crashes with JavaScript Console..13
3.2. Logging with GM_log...14
3.3. Inspecting elements with DOM Inspector...15
3.4. Evaluating expressions with Javascript Shell..17
3.5. Other debugging tools..19

Chapter 4. Common Patterns...20
4.1. Executing a user script on a domain and all its subdomains..20
4.2. Testing whether a Greasemonkey function is available..21
4.3. Testing whether a page includes an HTML element...22
4.4. Doing something for every HTML element..23
4.5. Doing something for every instance of a specific HTML element..24
4.6. Doing something for every element with a certain attribute..25
4.7. Inserting content before an element...28
4.8. Inserting content after an element..29
4.9. Removing an element..30
4.10. Replacing an element with new content..31
4.11. Inserting complex HTML quickly...32
4.12. Adding images without hitting a central server...33
4.13. Adding CSS styles...34
4.14. Getting an element's style..35
4.15. Setting an element's style...36
4.16. Post−processing a page after it renders..37
4.17. Matching case−insensitive attribute values...38
4.18. Getting the current domain name...39
4.19. Rewriting links...40
4.20. Redirecting pages...41
4.21. Intercepting user clicks..42
4.22. Overriding a built−in Javascript method..43
4.23. Parsing XML..44

Chapter 5. Case Studies...46
5.1. Case study: GMail Secure..46
5.2. Case study: Bloglines Autoload...47
5.3. Case study: Ain't It Readable...48

Dive Into Greasemonkey i

Table of Contents
Chapter 5. Case Studies

5.4. Case study: Offsite Blank..50
5.5. Case study: Dumb Quotes..52
5.6. Case study: Frownies...55
5.7. Case study: Zoom Textarea...58
5.8. Case study: Access Bar..64

Chapter 6. Advanced Topics...70
6.1. Storing and retrieving persistent data..70
6.2. Adding items to the menubar...71
6.3. Integrating data from other sites..72
6.4. Compiling your user script into an extension..73

Greasemonkey API Reference..75
Name...75
Synopsis..75
Description..75
History...75
Name...75
Synopsis..75
Description..75
History...76
Name...76
Synopsis..76
Description..76
History...76
Name...76
Synopsis..77
Description..77
Bugs..77
History...77
Name...77
Synopsis..77
Description..77
Examples...79
Bugs..80
Notes...80
History...80

List of " further reading" links...81

List of tips...83

List of examples..84

List of procedures...86

Revision history..87

Dive Into Greasemonkey ii

Table of Contents
About this book..89

GNU General Public License..90
1. Preamble...90
2. Terms and conditions for copying, distribution, and modification...91
3. How to apply these terms to your new programs...94

Dive Into Greasemonkey iii

Dive Into Greasemonkey
2005−05−09

This book lives at http://diveintogreasemonkey.org/. If you're reading it somewhere else, you may not have the latest
version.

Copyright © 2005 Mark Pilgrim

This book, its sample code, and its supplementary videos are free software. You can redistribute them and/or modify
them under the terms of the GNU General Public License as published by the Free Software Foundation, either
version 2 of the License or (at your option) any later version. This book, its sample code, and its supplementary videos
are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

Dive Into Greasemonkey 1

http://diveintogreasemonkey.org/

Chapter 1. Getting Started

1.1. What is Greasemonkey?

Greasemonkey is a Firefox extension that allows you to write scripts that alter the web pages you visit. You can use it
to make a web site more readable or more usable. You can fix rendering bugs that the site owner can't be bothered to
fix themselves. You can alter pages so they work better with assistive technologies that speak a web page out loud or
convert it to Braille. You can even automatically retrieve data from other sites to make two sites more interconnected.

Greasemonkey by itself does none of these things. In fact, after you install it, you won't notice any change at all... until
you start installing what are called "user scripts". A user script is just a chunk of Javascript code, with some additional
information that tells Greasemonkey where and when it should be run. Each user script can target a specific page, a
specific site, or a group of sites. A user script can do anything you can do in Javascript. In fact, it can do even more
than that, because Greasemonkey provides special functions that are only available to user scripts.

There is a Greasemonkey script repository <http://dunck.us/collab/GreaseMonkeyUserScripts> that contains hundreds
of user scripts that people have written to scratch their own personal itches. Once you write your own user script, you
can add it to the repository if you think others might find it useful. Or you can keep it to yourself, content in the
knowledge that you've made your own browsing experience is a little better.

There is also a Greasemonkey mailing list <http://greasemonkey.mozdev.org/list.html>, where you can ask questions,
announce user scripts, and discuss ideas for new features. The Greasemonkey developers frequent the list; they may
even answer your question!

Why this book?

Dive Into Greasemonkey grew out of discussions on the Greasemonkey mailing list, and out of my own experience in
writing user scripts. After only a week on the list, I was already seeing questions from new users that had already been
answered. With only a few user scripts under my belt, I was already seeing common patterns, chunks of reusable code
that solved specific problems that cropped up again and again. I set out to document the most useful patterns, explain
my own coding decisions, and learn as much as I could in the process.

This book would not be half as good as it is today without the help of the Greasemonkey developers, Aaron Boodman
and Jeremy Dunck, and the rest of the people who provided invaluable feedback on my early drafts. Thank you all.

Dive Into Greasemonkey 2

http://dunck.us/collab/GreaseMonkeyUserScripts
http://greasemonkey.mozdev.org/list.html

1.2. Installing Greasemonkey

To start writing user scripts, you first need to install the Greasemonkey browser extension, version 0.3 or later.

Procedure: Install the Greasemonkey extension

Visit the Greasemonkey home page <http://greasemonkey.mozdev.org/>.1.
Click the link titled "Install Greasemonkey".2.
Firefox will indicate (probably at the top of your browser window) that it prevented the site from installing
software. Click Edit options... to bring up the "Allowed Sites" dialog, then click Allow to add the
Greasemonkey site to your list of sites that are allowed to install software. Click OK to close the "Allowed
Sites" dialog.

3.

Once again, click the link titled "Install Greasemonkey".4.
Now an install dialog should pop up to confirm that you really want to install. Wait a few seconds for the
install button to enable, then click Install now.

5.

Restart your browser.6.

Once you restart your browser, select the Tools menu. You should see three new menu items: Install User Script...,
Manage User Scripts..., and User Script Commands. Only Manage User Scripts... will be enabled, but that's OK. The
others only become enabled under special circumstances.

By default, installing Greasemonkey does not add any functionality to your browser (other than those three menu
items). All it does it enable you to install additional items, called "user scripts", which customize specific web pages.

Dive Into Greasemonkey 3

http://greasemonkey.mozdev.org/

1.3. Installing a user script

A Greasemonkey "user script" is a single file, written in Javascript, that customizes one or more web pages.

Tip:

Many user scripts are available at the Greasemonkey script repository
<http://dunck.us/collab/GreaseMonkeyUserScripts>, although there is no requirement to list your
scripts there. You may host (and users may install) your script from anywhere. You don't even need a
web server; you can install a user script from a local file.

Note:

A user script's filename must end in .user.js.

The first user script I wrote was called "Butler". It adds functionality to Google search results.

Procedure: Install the Butler user script

Visit the Butler home page <http://diveintomark.org/projects/butler/> to see a brief description of the
functionality that Butler offers. (Not all user scripts have home pages; the only thing Greasemonkey cares
about is the script itself.)

1.

Click the link titled "Download version..." (0.3 as of this writing), and you will see the script itself in your
browser. It is several pages long.

2.

In the Tools menu, the Install User Script... item should now be enabled. Select it.3.
A dialog will pop up titled "Install User Script", which displays the name of the script you are about to install,
a brief description, and a list of included and excluded pages. All of this information is taken from the script
itself; you'll learn how to define it in Describing your user script with metadata.

4.

Click OK to install the user script.5.

If all went well, Greasemonkey will pop up an alert saying "Success! Refresh page to see changes."

Now, search for something in Google <http://www.google.com/>. In the search results page, there is a line at the top
of the results that says "Try your search on: Yahoo, Ask Jeeves, AlltheWeb, ...". There is also a banner along the top
that says "Enhanced by Butler". All of these were added by the Butler user script.

Further reading

Greasemonkey script repository <http://dunck.us/collab/GreaseMonkeyUserScripts> contains hundreds of
Greasemonkey scripts.

•

Dive Into Greasemonkey 4

http://dunck.us/collab/GreaseMonkeyUserScripts
http://diveintomark.org/projects/butler/
http://www.google.com/
http://dunck.us/collab/GreaseMonkeyUserScripts

1.4. Managing your user scripts

You can install as many Greasemonkey scripts as you like. Greasemonkey has a graphical configuration dialog to
manage your user scripts: disable them temporarily, change their configuration, or uninstall them completely.

Procedure: Disable Butler temporarily

From the menu, select Tools−>Manage User Scripts.... Greasemonkey will pop up a dialog titled "Manage
User Scripts".

1.

In the left−hand pane of the dialog is a list of all the user scripts you have installed. (If you've been following
along from the beginning, then this will be just one script: Butler.)

2.

Select Butler in the list if it is not already selected, and deselect the Enabled checkbox. The color of "Butler"
in the left−hand pane should change subtly from black to gray. (This is difficult to see while it is still selected,
but more useful once you have dozens of scripts installed.)

3.

Click OK to exit the "Manage User Scripts" dialog.4.

Now Butler is installed, but inactive. You can verify this by searching for something on Google. It should no longer
say "Enhanced by Butler" along the top. You can re−enable Butler by repeating the procedure and re−selecting the
Enabled checkbox in the "Manage User Scripts" dialog.

Note:

Although I refer to disabling a user script as "temporary", it will remain disabled until you explicitly
re−enable it. The only thing that's really temporary about it is that you can easily re−enable it without
having to find the original script on my web site and re−install it.

You can also use the "Manage User Scripts" dialog to uninstall scripts entirely.

Procedure: Uninstall Butler

From the menu, select Tools−>Manage User Scripts.... Greasemonkey will pop up the "Manage User Scripts"
dialog.

1.

In the left−hand pane, select Butler and click Uninstall. There is no confirmation; the user script is
immediately uninstalled.

2.

Step 3... There is no step 3! (With apologies to Jeff Goldblum.)3.

But wait, there's more! You can also change the configuration of user scripts you have previously installed. Do you
remember that dialog you got when you first installed Butler, the one that had the two lists of sites to include and
exclude? Well, you can change those parameters yourself, either at install time, or at any time in the "Manage User
Scripts" dialog.

Let's say, for example, that you like Butler, but you have no use for it on Froogle <http://froogle.google.com/>,
Google's product comparison site. You can modify the user script configuration to exclude that site, but still let it work
on other Google sites.

Procedure: Reconfigure Butler to leave Froogle alone

From the menu, select Tools−>Manage User Scripts.... Greasemonkey will pop up the "Manage User Scripts"
dialog.

1.

Dive Into Greasemonkey 5

http://froogle.google.com/

In the left−hand pane, select "Butler". In the right−hand pane, it should show you two lists, one of included
pages ("http://*.google.*/*") and one of excluded pages (blank).

2.

Next to the "Excluded pages" list, click Add....3.
Greasemonkey will pop up a secondary dialog titled "Add Page" and prompt you to enter a new URL. Enter
http://froogle.google.com/* and click OK.

4.

Back in the "Manage User Scripts" dialog, the excluded pages list should now include your new URL
wildcard,http://froogle.google.com/*, meaning that Butler will not be executed on any page of
the froogle.google.com site. The asterisk serves as a simple wildcard, and you may use it within any
part of the URL: domain name, path, or even within the URL scheme (http://).

5.

Click OK to exit the "Manage User Scripts" dialog and search for a product on Froogle to verify that Butler is
no longer being executed. It should still be executed on normal web search results, image search results, and
other Google sites.

6.

Dive Into Greasemonkey 6

Chapter 2. Your First User Script

2.1. Hello World

Our hundred−mile−long journey into the wonderful world of Greasemonkey scripting begins with a single step, and it
is a step familiar to all readers of technical manuals: getting your computer to print out "Hello world".

Example: helloworld.user.js <http://diveintogreasemonkey.org/download/helloworld.user.js>

// Hello World! example user script
// version 0.1 BETA!
// 2005−04−22
// Copyright (c) 2005, Mark Pilgrim
// Released under the GPL license
// http://www.gnu.org/copyleft/gpl.html
//
// −−
//
// This is a Greasemonkey user script.
//
// To install, you need Greasemonkey: http://greasemonkey.mozdev.org/
// Then restart Firefox and revisit this script.
// Under Tools, there will be a new menu item to "Install User Script".
// Accept the default configuration and install.
//
// To uninstall, go to Tools/Manage User Scripts,
// select "Hello World", and click Uninstall.
//
// −−
//
// ==UserScript==
// @name Hello World
// @namespace http://diveintogreasemonkey.org/download/
// @description example script to alert "Hello world!" on every page
// @include *
// @exclude http://diveintogreasemonkey.org/*
// @exclude http://www.diveintogreasemonkey.org/*
// ==/UserScript==

alert('Hello world!');

As you can see, most of the lines in the Hello World user script are comments. Some of these comments, like the
instructions on how to install it, have no special meaning; they are simply there for the benefit of clueless end users.
However, there is a section in the comments that does have special meaning, as you'll see in the next section.

To see the user script in action, you should install it in the usual way, then visit a page outside the
diveintogreasemonkey.org domain (for example, Google <http://www.google.com/>). The page should
display as normal, but an alert will pop up saying "Hello world!"

Download

helloworld.user.js <http://diveintogreasemonkey.org/download/helloworld.user.js>•

Dive Into Greasemonkey 7

http://diveintogreasemonkey.org/download/helloworld.user.js
http://www.google.com/
http://diveintogreasemonkey.org/download/helloworld.user.js

2.2. Describing your user script with metadata

Every user script has a section of metadata that tells Greasemonkey about the script itself, where it came from, and
when to run it.

Example: Hello World metadata

// ==UserScript==
// @name Hello World
// @namespace http://diveintogreasemonkey.org/download/
// @description example script to alert "Hello world!" on every page
// @include *
// @exclude http://diveintogreasemonkey.org/*
// @exclude http://www.diveintogreasemonkey.org/*
// ==/UserScript==

There are six separate pieces of metadata here, wrapped in a set of Greasemonkey−specific comments. Let's take them
in order, starting with the wrapper.

// ==UserScript==
//
// ==/UserScript==

These comments are significant, and must match exactly. Greasemonkey uses them to signal the start and end of your
user script metadata. This section may be defined anywhere in your script, but is usually near the top.

Within the Greasemonkey metadata section, the first item is the name.

// @name Hello World

This is the name of your user script. It is displayed in the install dialog when you first install the script, and later in the
"Manage User Scripts" dialog. It should be short and to the point.

@name is optional. If present, it may appear only once. If not present, it defaults to the filename of the user script,
minus the .user.js extension.

Next comes the namespace.

// @namespace http://diveintogreasemonkey.org/download/

This is a URL, and Greasemonkey uses it to distinguish user scripts that have the same name but are written by
different authors. If you have a domain name, you can use it (or a subdirectory) as your namespace. Otherwise you
can use a tag: URI <http://taguri.org/>.

@namespace is optional. If present, it may appear only once. If not present, it defaults to the domain from which the
user downloaded the user script.

Tip:

You can specify the items of your user script metadata in any order. I like @name, @namespace,
@description, @include, and finally @exclude, but there is nothing special about this order.

Next comes the description.

Dive Into Greasemonkey 8

http://taguri.org/

// @description example script to alert "Hello world!" on every page

This is a human−readable description of what the user script does. It is displayed in the install dialog when you first
install the script, and later in the "Manage User Scripts" dialog. It should be no more than two sentences.

@description is optional. If present, it may appear only once. If not present, it defaults to an empty string.

Important:

Don't forget the @description. Even if you are only writing user scripts for yourself, you will
eventually end up with dozens of them, and administering them all in the "Manage User Scripts"
dialog will be much more difficult if you don't include a description.

The next three lines are the most important items (from Greasemonkey's perspective): the @include and
@exclude URLs.

// @include *
// @exclude http://diveintogreasemonkey.org/*
// @exclude http://www.diveintogreasemonkey.org/*

These lines tell Greasemonkey on which sites you want your user script to execute. Both specify a URL, with the *
character as a simple wildcard for part of the domain name or path. In this case, we are telling Greasemonkey to
execute the Hello World script on all sites except http://diveintogreasemonkey.org/ and
http://www.diveintogreasemonkey.org/. Excludes take precedence over includes, so even though
http://diveintogreasemonkey.org/download/ matches * (all sites), it will be excluded because it also
matches http://diveintogreasemonkey.org/*.

@include and @exclude are optional. You may specify as many included and excluded URLs as you need, but
you must specify each on its own line. If neither is specified, Greasemonkey will execute your user script on all sites
(as if you had specified @include *).

Note:

You need to be very specific with your @include and @exclude metadata. Greasemonkey makes
no assumptions about URLs that an end user might consider equivalent. If a site responds on both
http://example.com/ and http://www.example.com/, you need to declare both
variations.

Further reading

tag: URIs <http://taguri.org/>•

Dive Into Greasemonkey 9

http://taguri.org/

2.3. Coding your user script

Our first user script simply displays an alert saying "Hello world!" when it is executed.

Example: Display the "Hello world!" alert

alert('Hello world!');

Although this code looks obvious enough, and does exactly what you would expect, Greasemonkey is actually doing a
number of things behind the scenes to ensure that user scripts do not interact badly with other scripts defined by the
original page. Specifically, it automatically wraps your user script in an anonymous function wrapper. Ordinarily you
can ignore this, but it will eventually creep up and bite you in the ass, so you may as well learn about it now.

One of the most common ways this can bite you is that variables and functions that you define in a user script are not
available to other scripts. In fact, they are not available at all once the user script has finished running. This means that
you will run into problems if you are expecting to be able to call your own functions later by using the
window.setTimeout function, or by setting string−based onclick attributes on links and expecting Javascript
to evaluate your function names later.

For example, this user script defines a function helloworld, then attempts to set a timer to call it one second later.

Example: Bad way to delay calling a function

function helloworld() {
 alert('Hello world!');
}

window.setTimeout("helloworld()", 60);

This will not work; no alert will be displayed. If you open JavaScript Console, you will see an exception displayed:
Error: helloworld is not defined. This is because, by the time the timeout expires and the call to
helloworld() is evaluated, the helloworld function no longer exists.

If you need to reference your user script's variables or functions later, you will need to explicitly define them as
properties of the window object, which is always available.

Example: Better way to delay calling a function

window.helloworld = function() {
 alert('Hello world!');
}

window.setTimeout("helloworld()", 60);

This works as expected: one second after the page loads, an alert pops up proudly displaying "Hello world!"

However, setting properties on window is still not ideal; it's a bit like using a global variable when a local one will
do. (Actually, it's exactly like that, since window is global and available to all scripts on the page.) More practically,
you could end up interfering with other scripts that were defined on the page, or even other user scripts.

Dive Into Greasemonkey 10

The best solution is to define an anonymous function yourself and pass it as the first argument to
window.setTimeout.

Example: Best way to delay calling a function

window.setTimeout(function() { alert('Hello world!') }, 60);

What I'm doing here is creating a function without a name (an "anonymous function"), then immediately passing the
function itself to window.setTimeout. This accomplishes the same thing as the previous example, but it leaves no
trace, i.e. it's undetectable to other scripts.

I find that I use anonymous functions regularly while writing user scripts. They are ideal for creating "one−off"
functions and passing them as arguments to things like window.setTimeout,
document.addEventListener, or assigning to event handlers like click or submit.

Further reading

Anonymous functions in Javascript <http://novemberborn.net/sifr/explained/terminology>•
Block Scope in Javascript <http://youngpup.net/2004/jsblockscope> and associated discussion thread
<http://youngpup.net/2004/jsblockscope/comments>

•

Dive Into Greasemonkey 11

http://novemberborn.net/sifr/explained/terminology
http://youngpup.net/2004/jsblockscope
http://youngpup.net/2004/jsblockscope/comments

2.4. Editing your user script

For script authors, the "Manage User Scripts" dialog has a feature that is especially useful: an Edit button to edit an
installed script "live".

Procedure: Edit Hello World source code and see the results

From the menu, select Tools−>Manage User Scripts.... Greasemonkey will pop up the "Manage User Scripts"
dialog.

1.

In the left−hand pane, select Hello World and click Edit. This should open the installed version of Hello
World in your favorite text editor. (If it doesn't, verify that .js files are associated with your favorite text
editor.)

2.

Change the alert statement to display "Live editing!" instead.3.
Save your changes in your editor, then go back to your browser and test the change by refreshing any page.
You should see the results of your change immediately; there is no need to re−install or "refresh" your user
script in any way. You are editing "live".

4.

Tip:

When you click Edit in the "Manage User Scripts" dialog, you are "live" editing a copy of your script
that is buried deep inside your Firefox profile directory. I've gotten into the habit, once I've finished a
"live" editing session, of going back to my text editor one last time and selecting File−>Save as...,
and saving the user script in another directory. While it's not necessary (Greasemonkey only pays
attention to the copy in your profile directory), I prefer to keep the "master copy" of my scripts in
another directory with the rest of my work.

Dive Into Greasemonkey 12

Chapter 3. Debugging User Scripts

3.1. Tracking crashes with JavaScript Console

If your user script doesn't appear to be running, the first place to check is JavaScript Console, which lists all
script−related errors, including user scripts.

Procedure: Open JavaScript Console

From the Firefox menu, select Tools−>Javascript Console.1.
The console lists all script errors on all pages since you opened Firefox, which can be quite a lot. (You'd be
surprised how many high−profile sites have scripts that crash regularly.) Click Clear to clear the list before
starting to debug your own user script.

2.

Now refresh the page you were working on to test the user script that doesn't appear to be doing anything. If it is
indeed crashing, an exception will be displayed in JavaScript Console.

Note:

If your user script is crashing, JavaScript Console will display an exception and a line number. Due to
the way Greasemonkey injects user scripts into a page, this line number is not actually useful, and you
should ignore it. It is not the line number within your user script where the exception occurred.

Dive Into Greasemonkey 13

3.2. Logging with GM_log

Greasemonkey provides a logging function, GM_log, that allows you to write messages to JavaScript Console. Such
messages should be taken out before release, but they are enormously helpful in debugging. Plus, watching the
console pile up with log messages is much more satisfying than sprinkling alerts throughout your code and clicking
OK over and over.

GM_log takes one argument, the string to be logged. After logging to JavaScript Console, the user script will
continue executing normally.

Example: Write to JavaScript Console and continue (gmlog.user.js
<http://diveintogreasemonkey.org/download/gmlog.user.js>)

if (/^http:\/\/diveintogreasemonkey\.org\//.test(window.location.href)) {
 GM_log('running on Dive Into Greasemonkey site w/o www prefix');
} else {
 GM_log('running elsewhere');
}
GM_log('this line is always printed');

If you install this user script and open http://diveintogreasemonkey.org/, these two lines will appear in JavaScript
Console:

Greasemonkey: http://diveintomark.org/projects/greasemonkey//Test Log:
running on Dive Into Greasemonkey site w/o www prefix
Greasemonkey: http://diveintomark.org/projects/greasemonkey//Test Log:
this line is always printed

As you can see, Greasemonkey includes the namespace and script name, taken from the user script's metadata section,
then the message that was passed as an argument to GM_log.

If you visit somewhere other than http://diveintogreasemonkey.org/, these two lines will appear in JavaScript Console:

Greasemonkey: http://diveintomark.org/projects/greasemonkey//Test Log:
running elsewhere
Greasemonkey: http://diveintomark.org/projects/greasemonkey//Test Log:
this line is always printed

I tried and failed to find a length limit for logged messages. It is larger than 255 characters. Plus, lines in JavaScript
Console wrap properly, so you can always scroll down to see the rest of your log message. Go nuts with logging!

Tip:

In JavaScript Console, you can right−click (Mac users control−click) on any line and select Copy to
copy it to the clipboard.

See also

GM_log•

Dive Into Greasemonkey 14

http://diveintogreasemonkey.org/download/gmlog.user.js
http://diveintogreasemonkey.org/
http://diveintogreasemonkey.org/

3.3. Inspecting elements with DOM Inspector

DOM Inspector allows you to explore the parsed document object model (DOM) of any page. You can get details on
each HTML element, attribute, and text node. You can see all the CSS rules from each of the page's stylesheets. You
can explore all the scriptable properties of an object. It's extremely powerful.

DOM Inspector is included with the Firefox installation program, but depending on your platform, it may not installed
by default. If you don't see DOM Inspector in the Tools menu, you will need to re−install Firefox to get DOM
Inspector. This will not affect your existing bookmarks, preferences, extensions, or user scripts.

Procedure: Install DOM Inspector

Run the Firefox installation program.1.
After accepting the licensing agreement, select Custom install.2.
After selecting the destination directory, the installation wizard will ask you to choose additional components
you want to install. Select Developer Tools.

3.

After the installation is finished, run Firefox. You should see a new menu item, Tools−>DOM Inspector.4.

To get a sense of how powerful this tool really is, let's take a tour of the DOM of Dive Into Greasemonkey's home
page.

Procedure: Inspect and edit the Dive Into Greasemonkey home page

Visit http://diveintogreasemonkey.org/.1.
From the menu, select Tools−>DOM Inspector to open DOM Inspector.2.
In the DOM Inspector window, you should see a list of DOM nodes in the left−hand pane. If you don't, open
the dropdown menu in the upper−left corner and select DOM Nodes.

3.

The DOM node tree always starts with the document element, labeled #document. Expand this to reveal the
HTML element.

4.

Expand the HTML element to reveal 3 nodes: HEAD, #text, and BODY. Note that BODY has an id of
diveintogreasemonkey−org. Adjust the column widths if you don't see this.

5.

Expand BODY to reveal 5 nodes: #text, DIV id="intro", #text, DIV id="main", and #text.6.
Expand DIV id="intro" to reveal 2 nodes: #text and DIV class="sectionInner".7.
Expand DIV class="sectionInner" to reveal 2 nodes: #text and DIV
class="sectionInner2".

8.

Expand DIV class="sectionInner2" to reveal 5 nodes: #text, DIV class="s", #text, DIV
class="s", and #text.

9.

Expand the first DIV class="s" to reveal 5 nodes: #text, H1, #text, P, and #text.10.
Select the H1 node. On the original page (behind DOM Inspector), the H1 element should briefly flash a red
border. In the right−hand pane, you should see the node name ("H1"), namespace URI (blank, since HTML
does not have a namespace −− this is only used on pages served as application/xhtml+xml, or pages
displaying XML in some other namespace), node type (1 is an element), and node value (blank, since headers
do not have a value −− the text within the header has its own node).

11.

In the dropdown menu at the top of the right−hand pane, you will see a number of choices: DOM Node, Box
Model, XBL Bindings, CSS Style Rules, Computed Style, and Javascript Object. These provide different
information about the currently selected node. Some of them are editable, and changes are immediately
reflected on the original page. Select Javascript Object to see all the scriptable properties and methods of the
selected H1 element.

12.

Select CSS Style Rules. The right−hand pane will split into two panes, the top showing a list of all rules that
affect the element (including default rules built into the browser itself), the bottom showing individual

13.

Dive Into Greasemonkey 15

http://diveintogreasemonkey.org/

properties defined by those rules.
Select the second rule from the top−right pane, the style rules defined by the stylesheet at
http://diveintogreasemonkey.org/css/dig.css.

14.

Double−click the font−variant property from the bottom−right pane and enter a new value ofnormal.
In the original page (behind DOM Inspector), the "Dive Into Greasemonkey" logo text should immediately
change from small−caps to normal uppercase and lowercase letters.

15.

Right−click (Mac users control−click) anywhere in the bottom−right pane and select New Property. A dialog
will pop up titled "New Style Rule". Enter a property name ofbackground−color and click OK, then a
property value ofred and click OK to apply the new property. The new property and value should show up in
the bottom−right pane along with the existing properties, and the logo text in the original page should
immediately change to a red background.

16.

If clicking through each level of the DOM node tree is not your idea of a good time, I highly recommend the Inspect
Element extension, which allows you to drill directly to a specific element in DOM Inspector.

Warning:

You must install DOM Inspector before installing the Inspect Element extension, otherwise Firefox
will crash on startup. If this has already happened to you, open a command line window, navigate to
the directory where you installed Firefox, and typefirefox −safe−mode. Firefox will start up
without loading extensions, then select Tools−>Extensions and uninstall Inspect Element.

Procedure: Directly inspect an element with Inspect Element

Visit the Inspect Element download page and click Install Now.1.
Restart Firefox.2.
Revisit http://diveintogreasemonkey.org/.3.
Right−click (Mac users control−click) on the logo text, Dive Into Greasemonkey.4.
From the context menu, select Inspect element. DOM Inspector should open with the H1 element already
selected, and you can immediately start inspecting and/or editing its properties.

5.

Warning:

DOM Inspector does not "follow" you as you browse. If you open DOM Inspector and then navigate
somewhere else in the original window, DOM Inspector will get very confused. It's best to go where
you want to go, inspect what you want to inspect, then close DOM Inspector before doing anything
else.

Further reading

Introduction to the DOM Inspector <http://www.brownhen.com/DI.html>•
Inspect Element extension•
Inspector Widget extension <http://www.projectit.com/freestuff.html>, an alternative to the Inspect Element
extension that adds a toolbar button instead of a context menu item.

•

Dive Into Greasemonkey 16

http://diveintogreasemonkey.org/css/dig.css
http://diveintogreasemonkey.org/
http://www.brownhen.com/DI.html
http://www.projectit.com/freestuff.html

3.4. Evaluating expressions with Javascript Shell

Javascript Shell is a bookmarklet that allows you to evaluate arbitrary Javascript expressions in the context of the
current page.

Procedure: Install Javascript Shell

Visit Jesse's Web Development Bookmarklets <http://www.squarefree.com/bookmarklets/webdevel.html>.1.
Drag the Shell bookmarklet to your links toolbar.2.
Visit a page (for example, Dive Into Greasemonkey <http://diveintogreasemonkey.org/> home page), and
click the Shell bookmarklet in your links toolbar. The Javascript Shell window will open in the background.

3.

Javascript Shell offers you the same power as DOM Inspector, but in a free−form environment. Think of it as a
command line for the DOM. Let's play.

Example: Introduction to Javascript Shell

document.title
Dive Into Greasemonkey
document.title = 'Hello World'
Hello World
var paragraphs = document.getElementsByTagName('p')
paragraphs
[object HTMLCollection]
paragraphs.length
5
paragraphs[0]
[object HTMLParagraphElement]
paragraphs[0].innerHTML
Teaching an old web new tricks
paragraphs[0].innerHTML = 'Live editing, baby!'
Live editing, baby!

Your changes should be reflected in the original page as soon as you hit ENTER.

The only other thing I want to mention about Javascript Shell is the props function.

Example: Get properties of an element

var link = document.getElementsByTagName('a')[0]
props(link)
Methods of prototype: blur, focus
Fields of prototype: id, title, lang, dir, className, accessKey,
charset, coords, href, hreflang, name, rel, rev, shape, tabIndex,
target, type, protocol, host, hostname, pathname, search, port,
hash, text, offsetTop, offsetLeft, offsetWidth, offsetHeight,
offsetParent, innerHTML, scrollTop, scrollLeft, scrollHeight,
scrollWidth, clientHeight, clientWidth, style
Methods of prototype of prototype of prototype: insertBefore,
replaceChild, removeChild, appendChild, hasChildNodes, cloneNode,
normalize, isSupported, hasAttributes, getAttribute, setAttribute,
removeAttribute, getAttributeNode, setAttributeNode,
removeAttributeNode, getElementsByTagName, getAttributeNS,
setAttributeNS, removeAttributeNS, getAttributeNodeNS,

Dive Into Greasemonkey 17

http://www.squarefree.com/bookmarklets/webdevel.html
http://diveintogreasemonkey.org/

setAttributeNodeNS, getElementsByTagNameNS, hasAttribute,
hasAttributeNS, addEventListener, removeEventListener, dispatchEvent,
compareDocumentPosition, isSameNode, lookupPrefix, isDefaultNamespace,
lookupNamespaceURI, isEqualNode, getFeature, setUserData, getUserData
Fields of prototype of prototype of prototype: tagName, nodeName,
nodeValue, nodeType, parentNode, childNodes, firstChild, lastChild,
previousSibling, nextSibling, attributes, ownerDocument, namespaceURI,
prefix, localName, ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE,
CDATA_SECTION_NODE, ENTITY_REFERENCE_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, DOCUMENT_FRAGMENT_NODE, NOTATION_NODE,
baseURI, textContent, DOCUMENT_POSITION_DISCONNECTED,
DOCUMENT_POSITION_PRECEDING, DOCUMENT_POSITION_FOLLOWING,
DOCUMENT_POSITION_CONTAINS, DOCUMENT_POSITION_CONTAINED_BY,
DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC
Methods of prototype of prototype of prototype of prototype of prototype: toString

To coin a phrase, "Whoa!" What's all that about? It's a list of all the properties and methods of that <a> element that
are available to you in Javascript, grouped by levels in the DOM object hierarchy. Methods and properties that are
specific to link elements (like the blur and focus methods, and the href and hreflang properties) are listed
first, followed by methods and properties shared by all types of nodes (like the insertBefore method), and so on.

Again, this is the same information that is available in DOM Inspector... but with more typing and experimenting, and
less pointing and clicking.

Warning:

Like DOM Inspector, Javascript Shell does not "follow" you as you browse. If you open Javascript
Shell and then navigate somewhere else in the original window, Javascript Shell will get very
confused. It's best to go where you want to go, open Javascript Shell, fiddle to your heart's content,
then close Javascript Shell before doing anything else.

Dive Into Greasemonkey 18

3.5. Other debugging tools

Here is a list of other debugging tools that I have found useful, but haven't had time to document fully.

Further reading

Web Developer Extension <http://chrispederick.com/work/firefox/webdeveloper/> contains a plethora of
functions for deconstructing pages.

•

Aardvark <http://www.karmatics.com/aardvark/> interactively displays tag names, id and class attributes.•
Venkman Javascript Debugger <http://www.hacksrus.com/~ginda/venkman/> is a complete run−time
Javascript debugger.

•

Web Development Bookmarklets <http://www.squarefree.com/bookmarklets/webdevel.html> contains a
number of useful functions you can drag to your toolbar.

•

JSUnit <http://www.edwardh.com/jsunit/> is a unit testing framework for Javascript.•
js−lint <http://www.crockford.com/javascript/lint.html> checks Javascript code for common errors.•

Dive Into Greasemonkey 19

http://chrispederick.com/work/firefox/webdeveloper/
http://www.karmatics.com/aardvark/
http://www.hacksrus.com/~ginda/venkman/
http://www.squarefree.com/bookmarklets/webdevel.html
http://www.edwardh.com/jsunit/
http://www.crockford.com/javascript/lint.html

Chapter 4. Common Patterns

4.1. Executing a user script on a domain and all its subdomains

Many sites work equally well whether you include the www. prefix in the address or not. If you want to write a user
script for such sites, you need to make sure to catch both versions of the address.

Example: Metadata tags to match a domain and all subdomains

// ==UserScript==
// @include http://example.com/*
// @include http://*.example.com/*
// ==/UserScript==

Real examples

Butler <http://diveintomark.org/projects/butler/butler.user.js>•
Salon Auto−Pass <http://diveintogreasemonkey.org/download/salonautopass.user.js>•

Dive Into Greasemonkey 20

http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/salonautopass.user.js

4.2. Testing whether a Greasemonkey function is available

New versions of Greasemonkey expose new functions to user scripts. If you plan to distribute your user scripts, you
should check that the Greasemonkey functions you use actually exist.

Example: Alert the user if the GM_xmlhttpRequest function is not available

if (!GM_xmlhttpRequest) {
 alert('Please upgrade to the latest version of Greasemonkey.');
 return;
}
// more code here that uses GM_xmlhttpRequest

Dive Into Greasemonkey 21

4.3. Testing whether a page includes an HTML element

You can use the getElementsByTagName function to test whether an HTML element exists on a page.

Example: Check if the page contains a <textarea>

var textareas = document.getElementsByTagName('textarea');
if (textareas.length) {
 // there is at least one textarea on this page
} else {
 // there are no textareas on this page
}

Real examples

BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•
Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Dive Into Greasemonkey 22

http://diveintogreasemonkey.org/download/betterdir.user.js
http://diveintogreasemonkey.org/download/zoomtextarea.user.js

4.4. Doing something for every HTML element

Sometimes you need to do something with every HTML element on a page. Firefox supports
getElementsByTagName('*'), which returns a collection you can loop through.

Example: Loop through every element

var allElements, thisElement;
allElements = document.getElementsByTagName('*');
for (var i = 0; i < allElements.length; i++) {
 thisElement = allElements[i];
 // do something with thisElement
}

Note:

You should only do this if you really need to do something with every element. If you know in
advance that you only want to operate on certain elements, it will be faster to use an XPath query to
get exactly the elements you want. See Doing something for every element with a certain attribute for
more information.

Real examples

Anti−Disabler <http://diveintogreasemonkey.org/download/antidisabler.user.js>•

Dive Into Greasemonkey 23

http://diveintogreasemonkey.org/download/antidisabler.user.js

4.5. Doing something for every instance of a specific HTML element

Sometimes you need to do something with every instance of a particular HTML element on a page. For example, you
could change the font on every <textarea>. The easiest way to do this is to call
getElementsByTagName('tagname'), which returns a collection you can loop through.

Example: Find all the textareas on a page

var allTextareas, thisTextarea;
allTextareas = document.getElementsByTagName('textarea');
for (var i = 0; i < allTextareas.length; i++) {
 thisTextarea = allTextareas[i];
 // do something with thisTextarea
}

Note:

You should not use this pattern to do something to every link on the page, because the <a> element
can also be used for in−page anchors. See Doing something for every element with a certain attribute
for how to find all the links on a page.

Real examples

Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Dive Into Greasemonkey 24

http://diveintogreasemonkey.org/download/zoomtextarea.user.js

4.6. Doing something for every element with a certain attribute

The single most powerful tool in your Greasemonkey arsenal is the evaluate method, which finds elements,
attributes, and text on a page using a query language called XPath.

Let's say, for example, that you wanted to find all the links on a page. You might consider using
document.getElementsByTagName('a'), but then you'll still need to check each element to see if it has an
href attribute, because the <a> element can also be used for named anchors.

Instead, use Firefox's built−in XPath support to find all the <a> elements that have an href attribute.

Example: Find all the links on a page

var allLinks, thisLink;
allLinks = document.evaluate(
 '//a[@href]',
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
for (var i = 0; i < allLinks.snapshotLength; i++) {
 thisLink = allLinks.snapshotItem(i);
 // do something with thisLink
}

The document.evaluate method is the key here. It takes an XPath query as a string, then a bunch of other
parameters I'll explain in a minute. This XPath query finds all the <a> elements that have an href attribute, and
returns them in random order. (That is, the first one you get is not guaranteed to be the first link on the page.) Then
you access each found element with the allLinks.snapshotItem(i) method.

XPath expressions can do wonderous things. Here's one that finds any element that has a title attribute.

Example: Find all the elements with a title attribute

var allElements, thisElement;
allElements = document.evaluate(
 '//*[@title]',
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
for (var i = 0; i < allElements.snapshotLength; i++) {
 thisElement = allElements.snapshotItem(i);
 switch (thisElement.nodeName.toUpperCase()) {
 case 'A':
 // this is a link, do something
 break;
 case 'IMG':
 // this is an image, do something else
 break;
 default:
 // do something with other kinds of HTML elements
 }
}

Dive Into Greasemonkey 25

Tip:

Once you have a reference to an element (like thisElement), you can use
thisElement.nodeName to determine its HTML tag name. If the page is served as text/html,
the tag name is always returned as uppercase, regardless of how it was specified in the original page.
However, if the page is served as application/xhtml+xml, the tag name is always lowercase. I
always use thisElement.nodeName.toUpperCase() and forget about it.

Here's an XPath query that returns every <div> with a specific class.

Example: Find all <div>s with a class of sponsoredlink

var allDivs, thisDiv;
allDivs = document.evaluate(
 "//div[@class='sponsoredlink']",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
for (var i = 0; i < allDivs.snapshotLength; i++) {
 thisDiv = allDivs.snapshotItem(i);
 // do something with thisDiv
}

Note that I used double quotes around the XPath query string, so that I could use single quotes within it.

There are lots of variations of the document.evaluate method. The second parameter (document in both of the
previous examples) can be any element, and the XPath query will only return nodes that are children of that element.
So if you already have a reference to an element (say, from document.getElementById or a member of a
document.getElementsByTagName array), you can restrict the query to search only children of that element.

The third parameter is a reference to a namespace resolver function, which is only useful if you care about writing
user scripts that work on pages served with the application/xhtml+xml media type. If you don't know what
that means, don't worry about it; there aren't very many pages like that and you probably won't run into one. Mozilla
XPath documentation <http://www−jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath−tutorial.html> explains how to use it,
if you really want to know.

The fourth parameter is how you want your results returned. The previous two examples both use
XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, which returns elements in random order. I use this 99%
of the time, but if for some reason you wanted to make sure that you got elements back in exactly the order in which
they appear in the page, you can use XPathResult.ORDERED_NODE_SNAPSHOT_TYPE instead. Mozilla XPath
documentation <http://www−jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath−tutorial.html> gives examples of some other
variations as well.

The fifth parameter can be used to merge the results of two XPath queries. Pass in the result of a previous call to
document.evaluate, and it will return the combined results of both queries. The previous two examples both use
null, meaning that we are only interested in the single XPath query defined in the first parameter.

Got all that? XPath can be as simple or as complicated as you like. I urge you to read this excellent XPath tutorial
<http://www.zvon.org/xxl/XPathTutorial/General/examples.html> to learn more about XPath syntax. As for the other
parameters to document.evaluate, I rarely use them except as you've already seen here. In fact, you can define a
function to encapsulate them.

Dive Into Greasemonkey 26

http://www-jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath-tutorial.html
http://www-jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath-tutorial.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

Example: The xpath function

function xpath(query) {
 return document.evaluate(query, document, null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null);
}

Now you can simply call xpath('//a[@href]') to get all the links on the page, or xpath('//*[@title]')
to get all the elements with a title attribute. You'll still need to use the snapshotItem method to access each
item in the results; it's not a regular Javascript array.

Real examples

Access Bar <http://diveintogreasemonkey.org/download/accessbar.user.js>•
BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•
Blogdex Display Title <http://diveintogreasemonkey.org/download/blogdex−display−title.user.js>•
Butler <http://diveintomark.org/projects/butler/butler.user.js>•
Frownies <http://diveintogreasemonkey.org/download/frownies.user.js>•
Offsite Blank <http://diveintogreasemonkey.org/download/offsiteblank.user.js>•
Rotten Reviews <http://diveintogreasemonkey.org/download/rottenreviews.user.js>•
Stop The Presses <http://diveintogreasemonkey.org/download/stopthepresses.user.js>•

Further reading

Mozilla XPath documentation <http://www−jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath−tutorial.html>•
XPath tutorial by example <http://www.zvon.org/xxl/XPathTutorial/General/examples.html>•
XPathResult reference <http://www.xulplanet.com/references/objref/XPathResult.html>•

Dive Into Greasemonkey 27

http://diveintogreasemonkey.org/download/accessbar.user.js
http://diveintogreasemonkey.org/download/betterdir.user.js
http://diveintogreasemonkey.org/download/blogdex-display-title.user.js
http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/frownies.user.js
http://diveintogreasemonkey.org/download/offsiteblank.user.js
http://diveintogreasemonkey.org/download/rottenreviews.user.js
http://diveintogreasemonkey.org/download/stopthepresses.user.js
http://www-jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath-tutorial.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.xulplanet.com/references/objref/XPathResult.html

4.7. Inserting content before an element

Once you've found an element (by any means), you may wish to insert additional content before it. You can do this
with the insertBefore method.

Example: Insert an <hr> before the main content

This presumes that there is an element whose ID is "main".

var main, newElement;
main = document.getElementById('main');
if (main) {
 newElement = document.createElement('hr');
 main.parentNode.insertBefore(newElement, main);
}

Real examples

Butler <http://diveintomark.org/projects/butler/butler.user.js>•
Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Dive Into Greasemonkey 28

http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/zoomtextarea.user.js

4.8. Inserting content after an element

Once you've found an element, you may wish to insert additional content after it. You can use the insertBefore
function for this too, combined with the nextSibling property.

Example: Insert an <hr> after the navigation bar

This presumes that there is an element whose ID is "navbar".

var navbar, newElement;
navbar = document.getElementById('navbar');
if (navbar) {
 newElement = document.createElement('hr');
 navbar.parentNode.insertBefore(newElement, navbar.nextSibling);
}

Tip:

Inserting new content before someExistingElement.nextSibling will work even if
someExistingElement is the last child of its parent (i.e. it has no next sibling). In this case,
someExistingElement.nextSibling will return null, and the insertBefore function
will simply append the new content after all other siblings. (If this doesn't make any sense to you,
don't worry about it. The point is that this example will always work, even when it seems like it
shouldn't.)

Real examples

Blogdex Display Title <http://diveintogreasemonkey.org/download/blogdex−display−title.user.js>•
Butler <http://diveintomark.org/projects/butler/butler.user.js>•

Dive Into Greasemonkey 29

http://diveintogreasemonkey.org/download/blogdex-display-title.user.js
http://diveintomark.org/projects/butler/butler.user.js

4.9. Removing an element

You can use Greasemonkey to remove entire chunks of a page in one fell swoop, with the removeChild function.

Example: Remove an ad sidebar

This presumes that there is an element whose ID is "ads".

var adSidebar = document.getElementById('ads');
if (adSidebar) {
 adSidebar.parentNode.removeChild(adSidebar);
}

Note:

Removing an element with removeChild will also remove all the content inside it. For example, if
you remove a <table> element, this will also remove all of its table cells (<td> elements).

Tip:

If all you want to do is remove ads, it's probably easier to install AdBlock
<http://adblock.mozdev.org/> and import an up−to−date filter list
<http://www.geocities.com/pierceive/adblock/> than to write your own user script.

Real examples

Butler <http://diveintomark.org/projects/butler/butler.user.js>•

Dive Into Greasemonkey 30

http://adblock.mozdev.org/
http://www.geocities.com/pierceive/adblock/
http://diveintomark.org/projects/butler/butler.user.js

4.10. Replacing an element with new content

Once you find an element, you can replace it with entirely new content, using the replaceChild function.

Example: Replace an image with its alt text

This presumes that there is an element whose ID is "annoyingsmily".

var theImage, altText;
theImage = document.getElementById('annoyingsmily');
if (theImage) {
 altText = document.createTextNode(theImage.alt);
 theImage.parentNode.replaceChild(altText, theImage);
}

Note:

If you want to replace an element with a large chunk of HTML, you can construct the HTML as a
string and then set the element's innerHTML property.

Real examples

Frownies <http://diveintogreasemonkey.org/download/frownies.user.js>•

Dive Into Greasemonkey 31

http://diveintogreasemonkey.org/download/frownies.user.js

4.11. Inserting complex HTML quickly

The innerHTML property allows you to construct HTML as a string and then insert it directly into the page, without
constructing separate DOM objects for each HTML element and setting their attributes one by one.

Example: Insert a banner at the top of the page

var logo = document.createElement("div");
logo.innerHTML = '<div style="margin: 0 auto 0 auto; ' +
 'border−bottom: 1px solid #000000; margin−bottom: 5px; ' +
 'font−size: small; background−color: #000000; ' +
 'color: #ffffff;"><p style="margin: 2px 0 1px 0;"> ' +
 'YOUR TEXT HERE ' +
 '</p></div>';
document.body.insertBefore(logo, document.body.firstChild);

The key here is the second line, where I set logo.innerHTML to a string. Firefox parses the string as HTML and
creates all the necessary objects, just like it does for the entire page when it first loads. Then I can insert my new
logo (a <div> containing another <div> containing a <p>) into the page at any point � at the beginning of the
page, at the end, or before or after any element I choose. In other words, anywhere on the page.

Real examples

Access Bar <http://diveintogreasemonkey.org/download/accessbar.user.js>•
Butler <http://diveintomark.org/projects/butler/butler.user.js>•
BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•

Dive Into Greasemonkey 32

http://diveintogreasemonkey.org/download/accessbar.user.js
http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/betterdir.user.js

4.12. Adding images without hitting a central server

Firefox supports data: URLs, which are a way to embed chunks of data into a URL instead of retrieving the data
from the server in a separate call. You've probably never heard of data: URLs because Internet Explorer doesn't
support them, so no one uses them. But they can come in handy in user scripts.

Example: Add a graphical logo at the top of the page

var logo = document.createElement('img');
logo.src = ''+
 'LAAAAAANAA4AQAIjjI8Iyw3GhACSQecutsFV3nzgNi7SVEbo06lZa66LRib2UQAAOw%3D%3D';
document.body.insertBefore(logo, document.body.firstChild);

In this example, the src of the element is a data: URL which contains the entire image data in encoded
form. Once the new element is inserted into the page, it will display just like any other image, but without requiring
that the image be stored on a central server. In essence, you can embed images in your user scripts and distribute them
as part of the same file as the rest of your code.

Tip:

Use the data: URI kitchen <http://software.hixie.ch/utilities/cgi/data/data> to construct your own
data: URLs.

Real examples

Butler <http://diveintomark.org/projects/butler/butler.user.js>•
Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

See also

data: URI kitchen <http://software.hixie.ch/utilities/cgi/data/data>•

Dive Into Greasemonkey 33

http://software.hixie.ch/utilities/cgi/data/data
http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/zoomtextarea.user.js
http://software.hixie.ch/utilities/cgi/data/data

4.13. Adding CSS styles

I have often found the need to add my own CSS styles to a page. You can add styles that override existing styles, or
styles specific to new elements that your user script inserts.

Example: Make paragraph text larger

function addGlobalStyle(css) {
 var head, style;
 head = document.getElementsByTagName('head')[0];
 if (!head) { return; }
 style = document.createElement('style');
 style.type = 'text/css';
 style.innerHTML = css;
 head.appendChild(style);
}

addGlobalStyle('p { font−size: large ! important; }');

This function takes one argument, a string containing the style rules you want to add to the page. It works by quite
literally injecting a <style> element into the page's <head> section that contains your style rules. Firefox
automatically picks up the change, parses the style rules, and applies them to the page. You may include as many
separate style rules as you like in a single function call; just concatenate them together as a string and pass them all at
once.

Tip:

You can use the addGlobalStyle function to style elements that you insert into a page, or
elements that were part of the original page. However, if you are styling existing elements, you should
use the ! important keyword for each rule you define to ensure your styles override the rules
defined by the original page.

Real examples

Access Bar <http://diveintogreasemonkey.org/download/accessbar.user.js>•
Aint It Readable <http://diveintogreasemonkey.org/download/aintitreadable.user.js>•
BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•
Butler <http://diveintomark.org/projects/butler/butler.user.js>•
CDReadable <http://diveintogreasemonkey.org/download/cdreadable.user.js>•
LIP <http://diveintogreasemonkey.org/download/lip.user.js>•

See also

Case study: Ain't It Readable•

Dive Into Greasemonkey 34

http://diveintogreasemonkey.org/download/accessbar.user.js
http://diveintogreasemonkey.org/download/aintitreadable.user.js
http://diveintogreasemonkey.org/download/betterdir.user.js
http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/cdreadable.user.js
http://diveintogreasemonkey.org/download/lip.user.js

4.14. Getting an element's style

It is occasionally useful to get a specific element's actual style, after all CSS rules have been applied. You might
naively assume that an element's style property will give you this, but you would be mistaken. That only returns the
contents of the element's style attribute. To get the final style (including any styles defined in external stylesheets),
you need to use the getComputedStyle function.

To illustrate this, let's create a simple test page. It defines a style for all <p> elements, but then one of the <p>
elements overrides that with its style attribute.

<html>
<head>
<title>Style test page</title>
<style type="text/css">
p { background−color: white; color: red; }
</style>
</head>
<body>
<p id="p1">This line is red.</p>
<p id="p2" style="color: blue">This line is blue.</p>
</body>
</html>

Example: Get the styles defined by an element's style attribute

var p1elem, p2elem;
p1elem = document.getElementById('p1');
p2elem = document.getElementById('p2');
alert(p1elem.style.color); // will display an empty string
alert(p2elem.style.color); // will display "blue"

That wasn't terribly helpful, and you should never use element.style to get individual styles. (You can use it to set
individual styles; see Setting an element's style.)

So what should you use instead? getComputedStyle().

Example: Get the actual style of an element

var p1elem, p2elem, p1style, p2style;
p1elem = document.getElementById('p1');
p2elem = document.getElementById('p2');
p1style = getComputedStyle(p1elem, '');
p2style = getComputedStyle(p2elem, '');
alert(p1style.color); // will display "rgb(255, 0, 0)"
alert(p2style.color); // will display "rgb(0, 0, 255)"

Real examples

Butler <http://diveintomark.org/projects/butler/butler.user.js>•
Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Dive Into Greasemonkey 35

http://diveintomark.org/projects/butler/butler.user.js
http://diveintogreasemonkey.org/download/zoomtextarea.user.js

4.15. Setting an element's style

If you only need to set a few styles on a single element, you can do this "manually" by setting various subproperties
on the element's style property.

Example: Setting style on a single element

This presumes that there is an element whose ID is "logo".

var logo = document.getElementById('logo');
logo.style.marginTop = '2em';
logo.style.backgroundColor = 'white';
logo.style.color = 'red';

Warning:

The property names of individual styles are not always obvious. Generally, they follow the same
pattern, where margin−top becomes someElement.style.marginTop. But there are
exceptions: the float property is set with someElement.style.cssFloat, since "float" is a
reserved word in Javascript.

Real examples

Access Bar <http://diveintogreasemonkey.org/download/accessbar.user.js>•
BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•
Blogdex Display Title <http://diveintogreasemonkey.org/download/blogdex−display−title.user.js>•
Zoom Textarea <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Further reading

CSS properties <http://www.westciv.com/style_master/academy/css_tutorial/properties/>•

Dive Into Greasemonkey 36

http://diveintogreasemonkey.org/download/accessbar.user.js
http://diveintogreasemonkey.org/download/betterdir.user.js
http://diveintogreasemonkey.org/download/blogdex-display-title.user.js
http://diveintogreasemonkey.org/download/zoomtextarea.user.js
http://www.westciv.com/style_master/academy/css_tutorial/properties/

4.16. Post−processing a page after it renders

Because of how Firefox stores a rendered page internally, large changes to the page's DOM should be done after the
page is finished loading. You can delay processing of a function using the addEventListener function.

Example: Replace an entire page with custom content

var newBody =
'<html>' +
'<head>' +
'<title>My New Page</title>' +
'</head>' +
'<body>' +
'<p>This page is a complete replacement of the original.</p>' +
'</body>' +
'</html>';
window.addEventListener(
 'load',
 function() { document.body.innerHTML = newBody; },
 true);

Looking closely at this code, you might naturally wonder why it works at all. I am declaring an anonymous function
to pass as the second argument to window.addEventListener, which accesses the newBody variable defined
in the outer function. This is called a "closure", and is perfectly legal in Javascript. In general, an "inner" function
defined within an "outer" function can access all of the outer function's local variables −− even after the outer function
finishes executing. This is a very powerful feature that makes it possible to create event handlers and other functions
that contain data structures constructed at runtime.

Tip:

Zapping and replacing document.body.innerHTML does not change everything about the page.
Anything defined in the <head> of the original page will still be in effect, including the page title,
CSS styles, and scripts. You can modify or remove these separately.

Real examples

Access Bar <http://diveintogreasemonkey.org/download/accessbar.user.js>•
BetterDir <http://diveintogreasemonkey.org/download/betterdir.user.js>•

Dive Into Greasemonkey 37

http://diveintogreasemonkey.org/download/accessbar.user.js
http://diveintogreasemonkey.org/download/betterdir.user.js

4.17. Matching case−insensitive attribute values

Many attribute values in HTML are case−insensitive. Many can also contain leading and trailing spaces. If you want
to find all variations, you need to do a little legwork in your XPath queries.

Example: Find all forms whose method is "POST" or "post"

var postforms = document.evaluate(
 "//form[translate(@method, 'POST ', 'post')='post']",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);

This XPath query finds forms that submit with a POST method. First, we need to translate the method attribute to
lowercase, using the translate function to convert uppercase letters to lowercase. (XPath 2.0 has a lowercase
function, but I didn't have any success using it.) Second, we need to strip leading and trailing spaces. We can
incorporate this into our call to the translate function by including an extra space in the first argument. Since
there is no corresponding letter in the second argument, all spaces are stripped. Finally, we can compare the resulting
attribute value to 'post'.

Real examples

ForceGet <http://diveintogreasemonkey.org/download/forceget.user.js>•

Dive Into Greasemonkey 38

http://diveintogreasemonkey.org/download/forceget.user.js

4.18. Getting the current domain name

User scripts that operate on multiple domains (or all domains) frequently need to detect the domain of the current
page. You can use window.location.href to get the full URL of the current page, or
window.location.host to get just the domain name by itself.

Example: Get the current domain

var href = window.location.host;

Real examples

Offsite Blank <http://diveintogreasemonkey.org/download/offsiteblank.user.js>•

Dive Into Greasemonkey 39

http://diveintogreasemonkey.org/download/offsiteblank.user.js

4.19. Rewriting links

Once you find a link on a page, you can rewrite it by setting its href attribute.

Example: Add a query parameter to the end of a link

This presumes that there is a link with the id "article".

var a = document.getElementById('article');
if (a.href.match(/\?/i)) {
 // link already contains other parameters, so append "&printer=1"
 a.href += '&printer=1';
} else {
 // link does not contain any parameters, so append "?printer=1"
 a.href += '?printer=1';
}

Real examples

Rotten Reviews <http://diveintogreasemonkey.org/download/rottenreviews.user.js>•
Stop The Presses <http://diveintogreasemonkey.org/download/stopthepresses.user.js>•

Dive Into Greasemonkey 40

http://diveintogreasemonkey.org/download/rottenreviews.user.js
http://diveintogreasemonkey.org/download/stopthepresses.user.js

4.20. Redirecting pages

You can use Greasemonkey to automatically redirect certain pages, by setting the window.location.href
property.

Example: Redirect a site to its secure counterpart

window.location.href = window.location.href.replace(/^http:/, 'https:');

Real examples

GMail Secure <http://diveintogreasemonkey.org/download/gmailsecure.user.js>•
Salon Auto−Pass <http://diveintogreasemonkey.org/download/salonautopass.user.js>•

Dive Into Greasemonkey 41

http://diveintogreasemonkey.org/download/gmailsecure.user.js
http://diveintogreasemonkey.org/download/salonautopass.user.js

4.21. Intercepting user clicks

While rewriting links is easy, you can go one step further and trap every click, anywhere on the page, by using the
addEventListener function. (This also traps clicks on links.) You can then calculate what to do: whether to
allow the click to "fall through" to the clicked element, or do something else entirely.

Example: Do something when the user clicks anywhere on the page

document.addEventListener('click', function(event) {
 // event.target is the element that was clicked

 // do whatever you want here

 // if you want to prevent the default click action
 // (such as following a link), use these two commands:
 event.stopPropagation();
 event.preventDefault();
}, true);

Note the use of an anonymous function passed as an argument to the document.addEventListener function.

Dive Into Greasemonkey 42

4.22. Overriding a built−in Javascript method

You can use the prototype property to override a native object's method.

Example: Do something before a form is submitted

function newsubmit(event) {
 var target = event ? event.target : this;

 // do anything you like here
 alert('Submitting form to ' + target.action);

 // call real submit function
 this._submit();
}

// capture the onsubmit event on all forms
window.addEventListener('submit', newsubmit, true);

// If a script calls someForm.submit(), the onsubmit event does not fire,
// so we need to redefine the submit method of the HTMLFormElement class.
HTMLFormElement.prototype._submit = HTMLFormElement.prototype.submit;
HTMLFormElement.prototype.submit = newsubmit;

There are two things going on here. First, I am adding an event listener that traps submit events. A submit event
occurs when the user clicks a Submit button on a form. However, if another script manually calls the submit()
method of a form, the submit event does not fire. So, the second thing I do is override the submit method of the
HTMLFormElement class.

But wait, there's more. Both the event listener and the method override point to the same function, newsubmit. If
newsubmit gets called via a submit event, the event argument will be populated with an event object that
contains information about the event (for example, event.target will be the form being submitted). However, if a
script manually calls the submit method, the event argument will be missing, but the global variable this will
point to the form. Therefore, in my newsubmit function, I test whether event is null, and if so, get the target form
from this instead.

Tip:

A submit event fires when a user submits a form in the usual way, i.e. by clicking the form's Submit
button or hittingENTER within a form. However, the submit event does not fire when the form is
submitted via a script calling aForm.submit(). Therefore you need to do two things to capture a
form submission: add an event listener to capture to submit event, and modify the prototype of the
HTMLFormElement class to redirect the submit() method to your custom function.

Further reading

Javascript event compatibility tables <http://www.quirksmode.org/js/events_compinfo.html>•
Javascript−DOM prototypes in Mozilla <http://www.mozilla.org/docs/dom/mozilla/protodoc.html>•
Displaying Event object constants <http://www.mozilla.org/docs/dom/domref/examples.html#999002>•

Dive Into Greasemonkey 43

http://www.quirksmode.org/js/events_compinfo.html
http://www.mozilla.org/docs/dom/mozilla/protodoc.html
http://www.mozilla.org/docs/dom/domref/examples.html#999002

4.23. Parsing XML

Firefox automatically parses the current page into a DOM, but you can also manually create a DOM out of any XML
string, either one you constructed yourself, or XML that you retrieved from a remote location.

Example: Parse an arbitrary string as XML

var xmlString = '<passwd>' +
' <user id="101">' +
' <login>mark</login>' +
' <group id="100"/>' +
' <displayname>Mark Pilgrim</displayname>' +
' <homedir>/home/mark/</homedir>' +
' <shell>/bin/bash</shell>' +
' </user>' +
'</passwd>'
var parser = new DOMParser();
var xmlDoc = parser.parseFromString(xmlString, "application/xml");

The key here is the DOMParser object, which contains the parseFromString method. (It contains other methods
too, but they are not useful to us here.) Its parseFromString method takes two arguments: the XML string to
parse, and the content type. Both arguments are required.

Note:

The DOMParser's parseFromString method takes a content type as its second parameter. The
method accepts application/xml, application/xhtml+xml, and text/xml. For reasons
that are too ridiculous to go into, you should always use application/xml.

This pattern is especially powerful when you combine it with the GM_xmlhttpRequest function to parse XML
from a remote source.

Example: Parse XML from a remote source

GM_xmlhttpRequest({
 method: 'GET',
 url: 'http://greaseblog.blogspot.com/atom.xml',
 headers: {
 'User−agent': 'Mozilla/4.0 (compatible) Greasemonkey/0.3',
 'Accept': 'application/atom+xml,application/xml,text/xml',
 },
 onload: function(responseDetails) {
 var parser = new DOMParser();
 var dom = parser.parseFromString(responseDetails.responseText,
 "application/xml");
 var entries = dom.getElementsByTagName('entry');
 var title;
 for (var i = 0; i < entries.length; i++) {
 title = entries[i].getElementsByTagName('title')[0].textContent;
 alert(title);
 }
 }
});

Dive Into Greasemonkey 44

This code will load the Atom feed from http://greaseblog.blogspot.com/atom.xml, parse it into a DOM, and query the
DOM to get the list of entries. For each entry, it queries the DOM again to get the entry title, then displays it in a
dialog box.

See also

Doing something for every instance of a specific HTML element•
GM_xmlhttpRequest•

Dive Into Greasemonkey 45

http://greaseblog.blogspot.com/atom.xml

Chapter 5. Case Studies

5.1. Case study: GMail Secure

Forcing a site to use a secure connection

GMail Secure forces GMail <http://gmail.google.com/> to use a secure connection, by redirecting
http://gmail.google.com/ to https://gmail.google.com/.

Google offers GMail <http://gmail.google.com/>, their webmail service, through an unsecured connection (an
http:// address) or a secure connection (an https:// address). I could try to remember to always use the secure
connection when I'm checking my email on a public network (such as an Internet cafe), but why bother when my
computer can do remember it for me? I wrote a user script that detects when I'm attempting to use GMail over an
unsecure connection and redirects me to the secure site instead.

Example: Redirect GMail to an equivalent https:// address

// ==UserScript==
// @name GMailSecure
// @namespace http://diveintogreasemonkey.org/download/
// @description force GMail to use secure connection
// @include http://gmail.google.com/*
// ==/UserScript==

window.location.href = window.location.href.replace(/^http:/, 'https:');

This user script is very simple. Most of the "work" is accomplished by the @include line:

// @include http://gmail.google.com/*

This user script only runs if the @include matches, so if the script is running, I already know I'm in the wrong place
(in the sense that I'm using GMail over an insecure connection). Given that, accomplishing my goal is a single line of
code, to redirect the current page to the same URL, but with an https:// prefix instead of http://.

window.location.href = window.location.href.replace(/^http:/, 'https:');

See also

Redirecting pages•

Dive Into Greasemonkey 46

http://gmail.google.com/
http://gmail.google.com/

5.2. Case study: Bloglines Autoload

Automating page actions

Bloglines <http://www.bloglines.com/> is a web−based aggregator for syndicated feeds. It has a 2−pane interface; the
left−hand pane displays your subscriptions, and the right−hand pane displays the content from those subscriptions. It's
a very nice interface; the only thing I dislike about it is that I always use it the same way: every time I visit Bloglines,
I want to see everything I haven't seen before, that is, all the unread items.

In Bloglines, displaying all unread items is just one click away. Clicking on the root level of your subscriptions in the
lefthand pane, and it displays the unread items in the righthand pane. But since I always want to do this, I wrote a user
script to automate that one click.

Example: Make Bloglines display all unread items automatically

// ==UserScript==
// @name Bloglines Autoloader
// @namespace http://diveintogreasemonkey.org/download/
// @description Auto−display all new items in Bloglines
// @include http://bloglines.com/myblogs*
// @include http://www.bloglines.com/myblogs*
// ==/UserScript==

if (doLoadAll) {
 doLoadAll();
}

This user script is quite simple. Bloglines defines a function, doLoadAll(), which is what would get executed if I
manually clicked on the root level of my subscriptions list. Calling the function displays all unread items.

However, since Bloglines uses frames, the user script will end up getting executed in each frame (since they all match
the pattern I've defined in the @include), so I first need to check whether the doLoadAll() function exists in this
frame:

if (doLoadAll) {

Assumes the function exists, I simply call it. Since the user script runs in the same context as the page, I can call any
scripts that the original page has defined.

 doLoadAll();
 }

Download

bloglines−autoload.user.js
<http://diveintogreasemonkey.org/download/bloglines−autoload.user.js>

•

Dive Into Greasemonkey 47

http://www.bloglines.com/
http://diveintogreasemonkey.org/download/bloglines-autoload.user.js

5.3. Case study: Ain't It Readable

Overriding page styles

Ain't It Cool News <http://aint−it−cool−news.com/> is a site devoted to entertainment news. The site is wonderful; I
highly recommend it. Unfortunately, I can't stand how the site looks. Every headline is too large, too bold, and
changes color as you move your cursor over it. So I wrote a user script that changes the styles I don't like.

Example: aintitreadable.user.js <http://diveintogreasemonkey.org/download/aintitreadable.user.js>

// ==UserScript==
// @name Ain't It Readable
// @namespace http://diveintogreasemonkey.org/download/
// @description change style on aint−it−cool−news.com
// @include http://aint−it−cool−news.com/*
// @include http://*.aint−it−cool−news.com/*
// ==/UserScript==

function addGlobalStyle(css) {
 var head, style;
 head = document.getElementsByTagName('head')[0];
 if (!head) { return; }
 style = document.createElement('style');
 style.type = 'text/css';
 style.innerHTML = css;
 head.appendChild(style);
}

addGlobalStyle(
'h1, h2, h3, h4 {' +
' font−size: 12px ! important;' +
' line−height: 14px ! important;' +
' font−weight: normal ! important;' +
'}' +
'h1:hover, h2:hover, h3:hover, h4:hover {' +
' background−color: inherit ! important;' +
' color: inherit ! important;' +
'}');

This user script is very simple. First I define a function which adds arbitrary CSS styles to the page. See Adding CSS
styles for more information about this function.

function addGlobalStyle(css) {
 var head, style;
 head = document.getElementsByTagName('head')[0];
 if (!head) { return; }
 style = document.createElement('style');
 style.type = 'text/css';
 style.innerHTML = css;
 head.appendChild(style);
}

Then I simply call the function with the CSS styles I want to add: make the headlines smaller and not bold, and
remove the color change when you move the cursor over them. In this case, the page defines style rules for each of
these, so I use the ! important keyword to make sure that my style rules are applied instead of the page's original
rules.

Dive Into Greasemonkey 48

http://aint-it-cool-news.com/
http://diveintogreasemonkey.org/download/aintitreadable.user.js

Note that the function takes only one argument, a string that contains all the style rules to add. I've formatted the string
for readability here, but it's still just a string.

addGlobalStyle(
'h1, h2, h3, h4 {' +
' font−size: 12px ! important;' +
' line−height: 14px ! important;' +
' font−weight: normal ! important;' +
'}' +
'h1:hover, h2:hover, h3:hover, h4:hover {' +
' background−color: inherit ! important;' +
' color: inherit ! important;' +
'}');

Download

aintitreadable.user.js <http://diveintogreasemonkey.org/download/aintitreadable.user.js>•

See also

Adding CSS styles•

Dive Into Greasemonkey 49

http://diveintogreasemonkey.org/download/aintitreadable.user.js

5.4. Case study: Offsite Blank

Forcing offsite links to open in a new window

Offsite Blank is a user script that I wrote after someone posted a request to the Greasemonkey script repository. I
personally like to open links in a new tab in the current window, but other people prefer to open a separate window for
each site. Offsite Blank lets you do this automatically, by forcing offsite links to open in a new window.

Example: offsiteblank.user.js <http://diveintogreasemonkey.org/download/offsiteblank.user.js>

// ==UserScript==
// @name Offsite Blank
// @namespace http://diveintogreasemonkey.org/download/
// @description force offsite links to open in a new window
// @include http://*
// @include https://*
// ==/UserScript==

var a, thisdomain, links;
thisdomain = window.location.host;
links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
 a = links[i];
 if (a.host && a.host != thisdomain) {
 a.target = "_blank";
 }
}

First, I declare that this user script should run on every web page (but not, for example, on HTML documents stored
on your local machine that you open from the File−>Open menu).

// @include http://*
// @include https://*

The code breaks down into four steps:

Get the domain of the current page.1.
Get a list of all the links on the page.2.
Compare the domain of each link to the domain of the page.3.
If the domains don't match, set the target of the link so it opens in a new window.4.

Getting the domain of the current page is easy. See Getting the current domain name for more information.

thisdomain = window.location.host;

Getting a list of all the links on the page is equally easy, although I should note that I am ignoring my own advice and
simply using document.getElementsByTagName('a') instead of doing an XPath query. To−may−to,
to−mah−to...

links = document.getElementsByTagName('a');

Next I loop through all the links (well, all the <a> elements, some of which might be links) and check whether the
domain of the link matches the domain of the current page. Because some links might point to non−HTTP URLs (for
example, they could point to a local file, or to an FTP server), I need to check whether a.host exists, then check

Dive Into Greasemonkey 50

http://diveintogreasemonkey.org/download/offsiteblank.user.js

whether it's equal to the current domain.

for (var i = 0; i < links.length; i++) {
 a = links[i];
 if (a.host && a.host != thisdomain) {
 ...
 }

If I find a link that has a domain but isn't the same as the current domain, I simply set its target attribute to
"_blank" to force the link to open in a new window.

 a.target = "_blank";

Download

offsiteblank.user.js <http://diveintogreasemonkey.org/download/offsiteblank.user.js>•

See also

Getting the current domain name•
Doing something for every instance of a specific HTML element•
Doing something for every element with a certain attribute•

Dive Into Greasemonkey 51

http://diveintogreasemonkey.org/download/offsiteblank.user.js

5.5. Case study: Dumb Quotes

Converting smart quotes to dumb quotes

DumbQuotes was born out of a frustration shared by many webloggers: most publishing software can automatically
convert straight ASCII quotes to "smart quotes", but the same software is stupid about handling "smart quotes" when
an author copies and pastes them into an article. A common example is a blogger who wants to quote a passage from
another site. They select a few sentences in their web browser, paste it into a web form to post to their own site, and
the passage they pasted ends up looking nothing like the original site because their publishing software doesn't track
character encoding properly.

Well, I can't fix every publishing system in the world, but I can fix the problem for myself by writing a user script that
automatically converts smart quotes and other problematic high−bit characters to their 7−bit ASCII equivalent.

Example: dumbquotes.user.js <http://diveintogreasemonkey.org/download/dumbquotes.user.js>

// ==UserScript==
// @name DumbQuotes
// @namespace http://diveintogreasemonkey.org/download/
// @description straighten curly quotes and apostrophes, simplify fancy dashes, etc.
// @include *
// ==/UserScript==

var replacements, regex, key, textnodes, node, s;

replacements = {
 "\xa0": " ",
 "\xa9": "(c)",
 "\xae": "(r)",
 "\xb7": "*",
 "\u2018": "'",
 "\u2019": "'",
 "\u201c": '"',
 "\u201d": '"',
 "\u2026": "...",
 "\u2002": " ",
 "\u2003": " ",
 "\u2009": " ",
 "\u2013": "−",
 "\u2014": "−−",
 "\u2122": "(tm)"};
regex = {};
for (key in replacements) {
 regex[key] = new RegExp(key, 'g');
}

textnodes = document.evaluate(
 "//text()",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
for (var i = 0; i < textnodes.snapshotLength; i++) {
 node = textnodes.snapshotItem(i);
 s = node.data;
 for (key in replacements) {
 s = s.replace(regex[key], replacements[key]);
 }

Dive Into Greasemonkey 52

http://diveintogreasemonkey.org/download/dumbquotes.user.js

 node.data = s;
}

The code breaks down into four steps:

Define a list of string replacements, mapping certain 8−bit characters to their 7−bit equivalents.1.
Get all the text nodes of the current page.2.
Loop through the list of text nodes.3.
In each text, node, for each 8−bit character, replace it with its 7−bit equivalent.4.

The first step is really two steps. Javascript's string replacement is based on regular expressions. So in order to replace
8−bit characters with 7−bit equivalents, I really need to create a set of regular expression objects.

replacements = {
 "\xa0": " ",
 "\xa9": "(c)",
 "\xae": "(r)",
 "\xb7": "*",
 "\u2018": "'",
 "\u2019": "'",
 "\u201c": '"',
 "\u201d": '"',
 "\u2026": "...",
 "\u2002": " ",
 "\u2003": " ",
 "\u2009": " ",
 "\u2013": "−",
 "\u2014": "−−",
 "\u2122": "(tm)"};
regex = {};
for (key in replacements) {
 regex[key] = new RegExp(key, 'g');
}

I use the curly braces syntax to quickly create an associative array. This is equivalent to (but less typing than)
assigning each key−value pair individually:

replacements["\xa0"] = " ";
replacements["\xa9"] = "(c)";
replacements["\xae"] = "(r)";
// and so forth

The individual 8−bit characters are represented by their hexadecimal values, using the escaping syntax "\xa0" or
"\u2018". Once we have an associative array of characters to strings, I loop through the array and create a list of
regular expression objects. Each regular expression object will search globally for one 8−bit character. (The'g' in
the second argument means search globally; otherwise each regular expression would only search and replace the first
occurrence of a particular 8−bit character, and I might end up missing some.)

The next step is to get a list of all the text nodes in the current document. You might be tempted to say to yourself,
"Hey, I could just use document.body.innerHTML and get the whole page as a single string, and search and
replace in that."

var tmp = document.body.innerHTML;
// do a bunch of search/replace on tmp
document.body.innerHTML = tmp;

But this is a bad habit to get into, because the innerHTML property will return the entire source of the page: all the

Dive Into Greasemonkey 53

markup, all the script, all the attributes, everything. In this case it probably wouldn't cause a problem (HTML tags
themselves do not contain 8−bit characters), but in other cases it could be disastrous, and very difficult to debug. You
need to ask yourself what exactly you are trying to search−and−replace. If the answer is "the raw page source," then
go ahead and use innerHTML. However, in this case, the answer is "all the text on the page," so the correct solution
is to use an XPath query to get all the text nodes.

textnodes = document.evaluate(
 "//text()",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);

This works by using an XPath function, text(), which matches any text node. You're probably more familiar with
querying for element nodes: a list of all the <a> elements, or all the elements that have an alt attribute. But
the DOM also contains nodes for the actual text content within elements. (There are other types of nodes too, like
comments and processing instructions.) And it's the text nodes that we're interested in at the moment.

Step 3 is to loop through all the text nodes. This is exactly the same as looping through all the elements returned from
an XPath query like //a[@href]; the only difference is that each item in the loop is a text node, not an element
node.

for (var i = 0; i < textnodes.snapshotLength; i++) {
 node = textnodes.snapshotItem(i);
 s = node.data;
 // do replacements
 node.data = s;

node is the current text node in the loop, and s is a string that is the actual text of node. I'm going to use s to do the
replacements, then copy the result back to the original node.

So now that I have the text of a single node, I need to actually do the replacements. Since I pre−created a list of
regular expressions and a list of replacement string, this is relatively straightforward.

 for (key in replacements) {
 s = s.replace(regex[key], replacements[key]);
 }

Download

dumbquotes.user.js <http://diveintogreasemonkey.org/download/dumbquotes.user.js>•

See also

Doing something for every element with a certain attribute•

Dive Into Greasemonkey 54

http://diveintogreasemonkey.org/download/dumbquotes.user.js

5.6. Case study: Frownies

Converting graphical smilies to text

Frownies came to be in response to a joke. Someone on the Greasemonkey mailing list
<http://greasemonkey.mozdev.org/list.html> announced that they had developed a user script to convert ASCII
"smilies" like :−) to their graphical equivalents. Someone else responded, wondering how long it would take for
someone to do the reverse: convert graphical smilies back to text.

For the record, it took me about 20 minutes. Most of the time was spent researching publishing software that
auto−generated graphical smilies, and compiling a comprehensive list of variations.

This script relies on the fact that most publishing software that generates graphical smilies puts the text equivalent in
the alt attribute of the element. So really what this script does is replace images with their ALT text, if the
ALT text matches one of a list of pre−defined constants.

Example: frownies.user.js <http://diveintogreasemonkey.org/download/frownies.user.js>

// ==UserScript==
// @name Frownies
// @namespace http://diveintogreasemonkey.org/download/
// @description convert graphical smilies to their text equivalents
// @include *
// ==/UserScript==

var smilies, images, img, replacement;
smilies = [":)", ":−)" ":−(", ":(", ";−)", ";)", ":−D", ":D", ":−/",
 ":/", ":X", ":−X", ":\">", ":P", ":−P", ":O", ":−O", "X−(",
 "X(", ":−>", ":>", "B−)", "B)", ">:)", ":((", ":(((", ":−((",
 ":))", ":−))", ":−|", ":|", "O:−)", "O:)", ":−B", ":B", "=;",
 "I)", "I−)", "|−)", "|)", ":−&", ":&", ":−$", ":$", "[−(", ":O)",
 ":@)", "3:−O", ":(|)", "@};−", "**==", "(~~)", "*−:)", "8−X",
 "8X", "=:)", "<):)", ";;)", ":*", ":−*", ":S", ":−S", "/:)",
 "/:−)", "8−|", "8|", "8−}", "8}", "(:|", "=P~", ":−?", ":?",
 "#−O", "#O", "=D>", "~:>", "%%−", "~O)", ":−L", ":L", "[−O<",
 "[O<", "@−)", "@)", "$−)", "$)", ">−)", ":−\"", ":^O", "B−(",
 "B(", ":)>−", "[−X", "[X", "\\:D/", ">:D<", "(%)", "=((", "#:−S",
 "#:S", "=))", "L−)", "L)", "<:−P", "<:P", ":−SS", ":SS", ":−W",
 ":W", ":−<", ":<", ">:P", ">:−P", ">:/", ";))", ":−@", "^:)^",
 ":−J", "(*)", ":GRIN:", ":−)", ":SMILE:", ":SAD:", ":EEK:",
 ":SHOCK:", ":???:", "8)", "8−)", ":COOL:", ":LOL:", ":MAD:",
 ":RAZZ:", ":OOPS:", ":CRY:", ":EVIL:", ":TWISTED:", ":ROLL:",
 ":WINK:", ":!:", ":?:", ":IDEA:", ":ARROW:", ":NEUTRAL:",
 ":MRGREEN:"];
images = document.evaluate(
 '//img[@alt]',
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
for (var i = 0; i < images.snapshotLength; i++) {
 img = images.snapshotItem(i);
 alt = img.alt.toUpperCase();
 for (var j in smilies) {
 if (alt == smilies[j]) {
 replacement = document.createTextNode(alt);
 img.parentNode.replaceChild(replacement, img);
 }

Dive Into Greasemonkey 55

http://greasemonkey.mozdev.org/list.html
http://diveintogreasemonkey.org/download/frownies.user.js

 }
}

The code breaks down into four steps:

Define a list of smilies (as text strings).1.
Find all the images on the page that contain an alt attribute.2.
For each image, check whether the ALT text matches any of the list of ASCII smilies.3.
If it matches, replace the element with a text node that contains only the ASCII smily.4.

The first step simply defines a list, using Javascript's [] syntax.

smilies = [":)", ":−)" ":−(", ":(", ";−)", ";)", ":−D", ":D", ":−/",
 ":/", ":X", ":−X", ":\">", ":P", ":−P", ":O", ":−O", "X−(",
 "X(", ":−>", ":>", "B−)", "B)", ">:)", ":((", ":(((", ":−((",
 ":))", ":−))", ":−|", ":|", "O:−)", "O:)", ":−B", ":B", "=;",
 "I)", "I−)", "|−)", "|)", ":−&", ":&", ":−$", ":$", "[−(", ":O)",
 ":@)", "3:−O", ":(|)", "@};−", "**==", "(~~)", "*−:)", "8−X",
 "8X", "=:)", "<):)", ";;)", ":*", ":−*", ":S", ":−S", "/:)",
 "/:−)", "8−|", "8|", "8−}", "8}", "(:|", "=P~", ":−?", ":?",
 "#−O", "#O", "=D>", "~:>", "%%−", "~O)", ":−L", ":L", "[−O<",
 "[O<", "@−)", "@)", "$−)", "$)", ">−)", ":−\"", ":^O", "B−(",
 "B(", ":)>−", "[−X", "[X", "\\:D/", ">:D<", "(%)", "=((", "#:−S",
 "#:S", "=))", "L−)", "L)", "<:−P", "<:P", ":−SS", ":SS", ":−W",
 ":W", ":−<", ":<", ">:P", ">:−P", ">:/", ";))", ":−@", "^:)^",
 ":−J", "(*)", ":GRIN:", ":−)", ":SMILE:", ":SAD:", ":EEK:",
 ":SHOCK:", ":???:", "8)", "8−)", ":COOL:", ":LOL:", ":MAD:",
 ":RAZZ:", ":OOPS:", ":CRY:", ":EVIL:", ":TWISTED:", ":ROLL:",
 ":WINK:", ":!:", ":?:", ":IDEA:", ":ARROW:", ":NEUTRAL:",
 ":MRGREEN:"];

Next I search the page for all elements with an alt attribute, using an XPath query. See Doing something for
every element with a certain attribute for more details on XPath queries.

images = document.evaluate(
 '//img[@alt]',
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);

Step 3 loops through all these elements, and checks whether the alt attribute matches any of my defined
smilies. Because some smilies contain letters, I use the toUpperCase() method to convert the alt attribute to
uppercase before comparing.

for (var i = 0; i < images.snapshotLength; i++) {
 img = images.snapshotItem(i);
 alt = img.alt.toUpperCase())
 for (var j in smilies) {
 if (alt == smilies[j]) {
 // ...
 }
 }
}

Finally, I create a new text node with the text of the smily, and replace the existing element. See Replacing an
element with new content for more details.

 replacement = document.createTextNode(alt);

Dive Into Greasemonkey 56

 img.parentNode.replaceChild(replacement, img);

Download

frownies.user.js <http://diveintogreasemonkey.org/download/frownies.user.js>•

See also

Doing something for every element with a certain attribute•
Replacing an element with new content•

Dive Into Greasemonkey 57

http://diveintogreasemonkey.org/download/frownies.user.js

5.7. Case study: Zoom Textarea

Adding buttons to zoom textareas

Zoom Textarea alters web forms to add a toolbar above every <textarea> element (used for entering multiple lines
of text). The toolbar lets you increase or decrease the text size of the <textarea>, without changing the style of the
rest of the page. The buttons are fully keyboard−accessible; you can tab to them and pressENTER instead of clicking
them with your mouse. (I mention this up front because accessibility matters, and also because it was harder than it
sounds.)

Example: zoomtextarea.user.js <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>

// ==UserScript==
// @name Zoom Textarea
// @namespace http://diveintogreasemonkey.org/download/
// @description add controls to zoom textareas
// @include *
// ==/UserScript==

var textareas, textarea;

textareas = document.getElementsByTagName('textarea');
if (!textareas.length) { return; }

function textarea_zoom_in(event) {
 var link, textarea, s;
 link = event.currentTarget;
 textarea = link._target;
 s = getComputedStyle(textarea, "");
 textarea.style.width = (parseFloat(s.width) * 1.5) + "px";
 textarea.style.height = (parseFloat(s.height) * 1.5) + "px";
 textarea.style.fontSize = (parseFloat(s.fontSize) + 7.0) + 'px';
 event.preventDefault();
}

function textarea_zoom_out(event) {
 var link, textarea, s;
 link = event.currentTarget;
 textarea = link._target;
 s = getComputedStyle(textarea, "");
 textarea.style.width = (parseFloat(s.width) * 2.0 / 3.0) + "px";
 textarea.style.height = (parseFloat(s.height) * 2.0 / 3.0) + "px";
 textarea.style.fontSize = (parseFloat(s.fontSize) − 7.0) + "px";
 event.preventDefault();
}

function createButton(target, func, title, width, height, src) {
 var img, button;
 img = document.createElement('img');
 img.width = width;
 img.height = height;
 img.style.borderTop = img.style.borderLeft = "1px solid #ccc";
 img.style.borderRight = img.style.borderBottom = "1px solid #888";
 img.style.marginRight = "2px";
 img.src = src;
 button = document.createElement('a');
 button._target = target;
 button.title = title;
 button.href = '#';

Dive Into Greasemonkey 58

http://diveintogreasemonkey.org/download/zoomtextarea.user.js

 button.onclick = func;
 button.appendChild(img);
 return button;
}

for (var i = 0; i < textareas.length; i++) {
 textarea = textareas[i];
 textarea.parentNode.insertBefore(
 createButton(
 textarea,
 textarea_zoom_in,
 'Increase textarea size',
 20,
 20,
 'data:image/gif;base64,'+
'R0lGODlhFAAUAOYAANPS1tva3uTj52NjY2JiY7KxtPf3%2BLOys6WkpmJiYvDw8fX19vb'+
'296Wlpre3uEZFR%2B%2Fv8aqpq9va3a6tr6Kho%2Bjo6bKytZqZml5eYMLBxNra21JSU3'+
'Jxc3RzdXl4emJhZOvq7KamppGQkr29vba2uGBgYdLR1dLS0lBPUVRTVYB%2Fgvj4%2BYK'+
'Bg6SjptrZ3cPDxb69wG1tbsXFxsrJy29vccDAwfT09VJRU6uqrFlZW6moqo2Mj4yLjLKy'+
's%2Fj4%2BK%2Busu7t783Nz3l4e19fX7u6vaalqNPS1MjHylZVV318ftfW2UhHSG9uccv'+
'KzfHw8qqqrNPS1eXk5tvb3K%2BvsHNydeLi40pKS2JhY2hnalpZWlVVVtDQ0URDRJmZm5'+
'mYm11dXp2cnm9vcFxcXaOjo0pJSsC%2FwuXk6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'+
'AAC'+
'H5BAAAAAAALAAAAAAUABQAAAeagGaCg4SFhoeIiYqKTSQUFwgwi4JlB0pOCkEiRQKKRxM'+
'gKwMGDFEqBYpPRj4GAwwLCkQsijwQBAQJCUNSW1mKSUALNiVVJzIvSIo7GRUaGzUOPTpC'+
'igUeMyNTIWMHGC2KAl5hCBENYDlcWC7gOB1LDzRdWlZMAZOEJl83VPb3ggAfUnDo5w%2F'+
'AFRQxJPj7J4aMhYWCoPyASFFRIAA7'),
 textarea);
 textarea.parentNode.insertBefore(
 createButton(
 textarea,
 textarea_zoom_out,
 'Decrease textarea size',
 20,
 20,
 'data:image/gif;base64,'+
'R0lGODlhFAAUAOYAANPS1uTj59va3vDw8bKxtGJiYrOys6Wkpvj4%2BPb29%2FX19mJiY'+
'%2Ff3%2BKqqrLe3uLKytURDRFpZWqmoqllZW9va3aOjo6Kho4KBg729vWJhZK%2BuskZF'+
'R4B%2FgsLBxHNydY2Mj%2Ff396amptLS0l9fX9fW2dDQ0W1tbpmZm8DAwfT09fHw8n18f'+
'uLi49LR1V5eYOjo6VBPUa6tr769wEhHSNra20pJStPS1KuqrNPS1ZmYm%2B7t77Kys8rJ'+
'y%2Fj4%2BaSjpm9uca%2BvsMjHyqalqHRzdVJRU8PDxVRTVcvKzc3Nz0pKS9rZ3evq7MC'+
'%2FwsXFxp2cnnl4e1VVVu%2Fv8ba2uM7Oz29vcbu6vZqZmnJxc9vb3PHx8uXk5mhnamJh'+
'Y1xcXZGQklZVV29vcHl4eoyLjKqpq6Wlpl1dXuXk6AAAAAAAAAAAAAAAAAAAAAAAAAAAA'+
'AAA'+
'AAACH5BAAAAAAALAAAAAAUABQAAAeZgGaCg4SFhoeIiYqKR1IWVgcyi4JMBiQqA0heQgG'+
'KQTFLPQgMCVocBIoNNqMgCQoDVReKYlELCwUFI1glEYorOgopWSwiTUVfih8dLzRTKA47'+
'Ek%2BKBGE8GEAhFQYuPooBOWAHY2ROExBbSt83QzMbVCdQST8Ck4QtZUQe9faCABlGrvD'+
'rB4ALDBMU%2BvnrUuOBQkE4NDycqCgQADs%3D'),
 textarea);
 textarea.parentNode.insertBefore(
 document.createElement('br'),
 textarea);
}

The code looks complicated, and it is complicated, but for different reasons. It looks complicated because of the large
multiline jibberish−looking strings in the middle of it. Those are data: URIs, which look like hell but are easy to
generate. The real complexity lies elsewhere.

First, I get a list of all the <textarea> elements on the page. See Doing something for every instance of a specific
HTML element for more details on this pattern. If there aren't any, there's no point continuing, so return.

textareas = document.getElementsByTagName('textarea');

Dive Into Greasemonkey 59

if (!textareas.length) { return; }

Now let's skip around a little. Our "toolbar" is visually a row of buttons, but each button is really just an image of
something that looks pushable, wrapped in a link that executes one of our Javascript functions.

Since we'll be creating more than one button (this script only has two, but you could easily extend it with more
functionality), I created a function to encapsulate all the button−making logic.

function createButton(target, func, title, width, height, src) {

The createButton function takes 6 arguments:

target
an element object, the <textarea> element that this button will control

func
a function object, the Javascript function to be called when the user clicks the button with the mouse or
activates it with the keyboard

title
a string, the text of the tooltip when the user moves their cursor over the button

width
an integer, the width of the button. This should be the width of the graphic given in thesrc argument.

height
an integer, the height of the button. This should be the height of the graphic given in thesrc argument.

src
a string, the URL, path, or data: URI of the button graphic

Creating a button is split into two halves: creating the element, and then creating the <a> element around it.

I create the element by calling document.createElement and setting a few attributes, including style
attributes. See Setting an element's style for more details on this pattern.

 img = document.createElement('img');
 img._target = target;
 img.width = width;
 img.height = height;
 img.style.borderTop = img.style.borderLeft = "1px solid #ccc";
 img.style.borderRight = img.style.borderBottom = "1px solid #888";
 img.style.marginRight = "2px";
 img.src = src;

One thing I just want to point out quickly, because I think it's cool. You can assign the same value to two attributes at
once by using this syntax:

 img.style.borderTop = img.style.borderLeft = "1px solid #ccc";

OK, moving on. The second half of creating a button is creating the link (an <a> element) and putting the
element inside it.

 button = document.createElement('a');
 button._target = target;
 button.title = title;
 button.href = '#';
 button.onclick = func;
 button.appendChild(img);

Dive Into Greasemonkey 60

There are two things I want to point out here. First, I need to assign a bogus href attribute to the link, otherwise
Firefox would treat it a named anchor and wouldn't add it to the tab index (i.e. you wouldn't be able to tab to it,
making it inaccessible with the keyboard). Second, I'm setting the _target attribute to store a reference to the target
<textarea>. This is perfectly legal in Javascript; you can create new attributes on an object just by assigning them
a value. I'll access the custom _target attribute later, in the onclick event handler.

Now let's jump back to the onclick handler itself. Each handler is a function that takes one parameter,event.

function textarea_zoom_in(event)

The event object has several properties, only one of which I'm interested in at the moment: currentTarget.

 link = event.currentTarget;

If you read the documentation on the Event object <http://www.xulplanet.com/references/objref/Event.html>, you'll
see that there are several target−related properties, including one simply called target. You might be tempted to use
event.target to get a reference to the clicked link, but it behaves (in my opinion) inconsistently. When the user
tabs to the button and hitsENTER, event.target is the link, but when the user clicks the button with the mouse,
event.target is the image inside the link! I'm sure there's a reasonable explanation for this, but it is beyond my
level of understanding of the DOM event model. In any case, event.currentTarget returns the link in all cases,
so I use that.

Next I retrieve the reference to the <textarea> I'm actually going to be zooming, via the custom _target
property that I set when I created the button.

 textarea = link._target;

Now the real fun begins. (And you thought you were having fun already!) I need to get the current dimensions and
font size of the <textarea>, so that I can make them bigger. Simply retrieving the appropriate attributes from
textarea.style (textarea.style.width, textarea.style.height, and
textarea.style.fontSize) will not work, because those only get set if the page actually defined them in a
style attribute on the <textarea> itself. That's not what I want; I want the actual current style. For that I need
getComputedStyle. See Getting an element's style for more details on this function.

 s = getComputedStyle(textarea, "");
 textarea.style.width = (parseFloat(s.width) * 1.5) + "px";
 textarea.style.height = (parseFloat(s.height) * 1.5) + "px";
 textarea.style.fontSize = (parseFloat(s.fontSize) + 7.0) + 'px';

Finally, do you remember that bogus href value I added to my button link to make sure it was keyboard−accessible?
Well, it's now become an annoyance, because after Firefox finishes executing the onclick handler, it's going to try
to follow that link. Since it points to a non−existent anchor, Firefox is going to jump to the top of the page, regardless
of where the button is. This is annoying, and to stop it, I need to call event.preventDefault() before finishing
my onclick handler.

 event.preventDefault();

The rest of the script is straightforward. I loop through all the <textarea> elements, create zoom buttons for each
of them (each with its own onclick handler and button graphic), and insert the zoom buttons before the
<textarea>. For each image, I use a data: URI to create an inline graphic, so users don't need to hit a central
server to get the button graphics. See Inserting content before an element and Adding images without hitting a central
server for more details on these patterns.

for (var i = 0; i < textareas.length; i++) {

Dive Into Greasemonkey 61

http://www.xulplanet.com/references/objref/Event.html

 textarea = textareas[i];
 textarea.parentNode.insertBefore(
 createButton(
 textarea,
 textarea_zoom_in,
 'Increase textarea size',
 20,
 20,
 'data:image/gif;base64,'+
'R0lGODlhFAAUAOYAANPS1tva3uTj52NjY2JiY7KxtPf3%2BLOys6WkpmJiYvDw8fX19vb'+
'296Wlpre3uEZFR%2B%2Fv8aqpq9va3a6tr6Kho%2Bjo6bKytZqZml5eYMLBxNra21JSU3'+
'Jxc3RzdXl4emJhZOvq7KamppGQkr29vba2uGBgYdLR1dLS0lBPUVRTVYB%2Fgvj4%2BYK'+
'Bg6SjptrZ3cPDxb69wG1tbsXFxsrJy29vccDAwfT09VJRU6uqrFlZW6moqo2Mj4yLjLKy'+
's%2Fj4%2BK%2Busu7t783Nz3l4e19fX7u6vaalqNPS1MjHylZVV318ftfW2UhHSG9uccv'+
'KzfHw8qqqrNPS1eXk5tvb3K%2BvsHNydeLi40pKS2JhY2hnalpZWlVVVtDQ0URDRJmZm5'+
'mYm11dXp2cnm9vcFxcXaOjo0pJSsC%2FwuXk6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'+
'AAC'+
'H5BAAAAAAALAAAAAAUABQAAAeagGaCg4SFhoeIiYqKTSQUFwgwi4JlB0pOCkEiRQKKRxM'+
'gKwMGDFEqBYpPRj4GAwwLCkQsijwQBAQJCUNSW1mKSUALNiVVJzIvSIo7GRUaGzUOPTpC'+
'igUeMyNTIWMHGC2KAl5hCBENYDlcWC7gOB1LDzRdWlZMAZOEJl83VPb3ggAfUnDo5w%2F'+
'AFRQxJPj7J4aMhYWCoPyASFFRIAA7'),
 textarea);
 textarea.parentNode.insertBefore(
 createButton(
 textarea,
 textarea_zoom_out,
 'Decrease textarea size',
 20,
 20,
 'data:image/gif;base64,'+
'R0lGODlhFAAUAOYAANPS1uTj59va3vDw8bKxtGJiYrOys6Wkpvj4%2BPb29%2FX19mJiY'+
'%2Ff3%2BKqqrLe3uLKytURDRFpZWqmoqllZW9va3aOjo6Kho4KBg729vWJhZK%2BuskZF'+
'R4B%2FgsLBxHNydY2Mj%2Ff396amptLS0l9fX9fW2dDQ0W1tbpmZm8DAwfT09fHw8n18f'+
'uLi49LR1V5eYOjo6VBPUa6tr769wEhHSNra20pJStPS1KuqrNPS1ZmYm%2B7t77Kys8rJ'+
'y%2Fj4%2BaSjpm9uca%2BvsMjHyqalqHRzdVJRU8PDxVRTVcvKzc3Nz0pKS9rZ3evq7MC'+
'%2FwsXFxp2cnnl4e1VVVu%2Fv8ba2uM7Oz29vcbu6vZqZmnJxc9vb3PHx8uXk5mhnamJh'+
'Y1xcXZGQklZVV29vcHl4eoyLjKqpq6Wlpl1dXuXk6AAAAAAAAAAAAAAAAAAAAAAAAAAAA'+
'AAA'+
'AAACH5BAAAAAAALAAAAAAUABQAAAeZgGaCg4SFhoeIiYqKR1IWVgcyi4JMBiQqA0heQgG'+
'KQTFLPQgMCVocBIoNNqMgCQoDVReKYlELCwUFI1glEYorOgopWSwiTUVfih8dLzRTKA47'+
'Ek%2BKBGE8GEAhFQYuPooBOWAHY2ROExBbSt83QzMbVCdQST8Ck4QtZUQe9faCABlGrvD'+
'rB4ALDBMU%2BvnrUuOBQkE4NDycqCgQADs%3D'),
 textarea);
 textarea.parentNode.insertBefore(
 document.createElement('br'),
 textarea);
}

Download

zoomtextarea.user.js <http://diveintogreasemonkey.org/download/zoomtextarea.user.js>•

Further reading

Event documentation <http://www.xulplanet.com/references/objref/Event.html>•

See also

Doing something for every instance of a specific HTML element•
Getting an element's style•

Dive Into Greasemonkey 62

http://diveintogreasemonkey.org/download/zoomtextarea.user.js
http://www.xulplanet.com/references/objref/Event.html

Setting an element's style•
Inserting content before an element•
Adding images without hitting a central server•

Dive Into Greasemonkey 63

5.8. Case study: Access Bar

Displaying accesskeys in a fixed status bar

Access Bar displays accesskeys defined on a web page. Accesskeys are an accessibility feature that allow you to jump
to a specific link or form field with a keyboard shortcut defined by the page author. (Learn more about accesskeys
<http://diveintoaccessibility.org/day_15_defining_keyboard_shortcuts.html>.)

Firefox supports accesskeys, but it does not display which keys are defined on a page. Thus, Access Bar was born.

Example: accessbar.user.js <http://diveintogreasemonkey.org/download/accessbar.user.js>

// ==UserScript==
// @name Access Bar
// @namespace http://diveintogreasemonkey.org/download/
// @description show accesskeys defined on page
// @include *
// ==/UserScript==

function addGlobalStyle(css) {
 var head, style;
 head = document.getElementsByTagName('head')[0];
 if (!head) { return; }
 style = document.createElement('style');
 style.type = 'text/css';
 style.innerHTML = css;
 head.appendChild(style);
}

var akeys, descriptions, a, desc, label, div;
akeys = document.evaluate(
 "//*[@accesskey]",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
if (!akeys.snapshotLength) { return; }
descriptions = new Array();
desc = '';
for (var i = 0; i < akeys.snapshotLength; i++) {
 a = akeys.snapshotItem(i);
 desctext = '';
 if (a.nodeName == 'INPUT') {
 label = document.evaluate("//label[@for='" + a.name + "']",
 document,
 null,
 XPathResult.FIRST_ORDERED_NODE_TYPE,
 null).singleNodeValue;
 if (label) {
 desctext = label.title;
 if (!desctext) { desctext = label.textContent; }
 }
 }
 if (!desctext) { desctext = a.textContent; }
 if (!desctext) { desctext = a.title; }
 if (!desctext) { desctext = a.name; }
 if (!desctext) { desctext = a.id; }
 if (!desctext) { desctext = a.href; }
 if (!desctext) { desctext = a.value; }

Dive Into Greasemonkey 64

http://diveintoaccessibility.org/day_15_defining_keyboard_shortcuts.html
http://diveintogreasemonkey.org/download/accessbar.user.js

 desc = '[' +
 a.getAttribute('accesskey').toUpperCase() + '] ';
 if (a.href) {
 desc += '' + desctext + '';
 } else {
 desc += desctext;
 }
 descriptions.push(desc);
}
descriptions.sort();
div = document.createElement('div');
div.id = 'accessbar−div−0';
desc = '<div><li class="first">' + descriptions[0] + '';
for (var i = 1; i < descriptions.length; i++) {
 desc = desc + '' + descriptions[i] + '';
}
desc = desc + '</div>';
div.innerHTML = desc;
document.body.style.paddingBottom = "4em";
window.addEventListener(
 "load",
 function() {
 document.body.appendChild(div);
 },
 true);
addGlobalStyle(
'#accessbar−div−0 {'+
' position: fixed;' +
' left: 0;' +
' right: 0;' +
' bottom: 0;' +
' top: auto;' +
' border−top: 1px solid silver;' +
' background: black;' +
' color: white;' +
' margin: 1em 0 0 0;' +
' padding: 5px 0 0.4em 0;' +
' width: 100%;' +
' font−family: Verdana, sans−serif;' +
' font−size: small;' +
' line−height: 160%;' +
'}' +
'#accessbar−div−0 a,' +
'#accessbar−div−0 li,' +
'#accessbar−div−0 span,' +
'#accessbar−div−0 strong {' +
' background−color: transparent;' +
' color: white;' +
'}' +
'#accessbar−div−0 div {' +
' margin: 0 1em 0 1em;' +
'}' +
'#accessbar−div−0 div ul {' +
' margin−left: 0;' +
' margin−bottom: 5px;' +
' padding−left: 0;' +
' display: inline;' +
'}' +
'#accessbar−div−0 div ul li {' +
' margin−left: 0;' +
' padding: 3px 15px;' +
' border−left: 1px solid silver;' +
' list−style: none;' +

Dive Into Greasemonkey 65

' display: inline;' +
'}' +
'#accessbar−div−0 div ul li.first {' +
' border−left: none;' +
' padding−left: 0;' +
'}');

The code breaks down into six steps:

Define a helper function, addGlobalStyle1.
Find all the page elements that include an accesskey attribute2.
Loop through those elements and determine the most appropriate text to describe each element3.
Construct a sorted list of links to the accesskey−enabled elements4.
Add the sorted list to the page, using standard ul and li elements5.
Style the list so it appears as a fixed faux−status−bar at the bottom of the viewport6.

First things first. I need a helper function, addGlobalStyle, to inject my own CSS styles (used in step 6). See
Adding CSS styles for more details on this pattern.

function addGlobalStyle(css) {
 var head, style;
 head = document.getElementsByTagName('head')[0];
 if (!head) { return; }
 style = document.createElement('style');
 style.type = 'text/css';
 style.innerHTML = css;
 head.appendChild(style);
}

Step 2 gets a list of all the page elements that contain an accesskey attribute. This is easy with Firefox's XPath
support. Note that if the XPath query returns no results, I simply bail, since there will be nothing to display. See Doing
something for every element with a certain attribute for more information on this pattern.

var akeys, descriptions, a, i, desc, label, div;
akeys = document.evaluate(
 "//*[@accesskey]",
 document,
 null,
 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,
 null);
if (!akeys.snapshotLength) { return; }

Step 3, constructing the list of suitable descriptions for each accesskey−enabled element, is the most complicated
part of the script. The problem is that accesskey attributes can appear in several different HTML elements.

An input element in a form can define an accesskey. input elements may or may not have an associated
label that contains an associated text label for the input field. If so, the label may contain a title attribute
that gives even more detailed information about the input field. Or the label attribute may simply contain text. Or
the input element may have no associated label at all, in which case the value attribute of the input element is
the best I can do.

On the other hand, the label itself can define the accesskey, instead of the input element the label describes.
Again, I'll look for a description the title attribute of the label element, but fall back to the text of the label if no
title attribute is present.

A link can also define an accesskey attribute. If so, the link text is the obvious choice. But if the link has no text

Dive Into Greasemonkey 66

(for example, if it only contains an image), then the link's title attribute is the next place to look. If the link
contains no text and no title, I fall back to the link's name attribute, and failing that, the link's id attribute.

Ain't heuristics a bitch? Here's the full algorithm. Remember, akeys is an XPathResult object, so I need to get
each result by calling akeys.snapshotItem(i).

descriptions = new Array();
desc = '';
for (var i = 0; i < akeys.snapshotLength; i++) {
 a = akeys.snapshotItem(i);
 desctext = '';
 if (a.nodeName == 'INPUT') {
 label = document.evaluate("//label[@for='" + a.name + "']",
 document,
 null,
 XPathResult.FIRST_ORDERED_NODE_TYPE,
 null).singleNodeValue;
 if (label) {
 desctext = label.title;
 if (!desctext) { desctext = label.textContent; }
 }
 }
 if (!desctext) { desctext = a.textContent; }
 if (!desctext) { desctext = a.title; }
 if (!desctext) { desctext = a.name; }
 if (!desctext) { desctext = a.id; }
 if (!desctext) { desctext = a.href; }
 if (!desctext) { desctext = a.value; }
 desc = '[' +
 a.getAttribute('accesskey').toUpperCase() + '] ';
 if (a.href) {
 desc += '' + desctext + '';
 } else {
 desc += desctext;
 }
 descriptions.push(desc);
}

Step 4 is simple, since Javascript arrays have a sort method that sorts the array in place.

descriptions.sort();

Step 5 creates the HTML to render the list of accesskey−enabled elements. I create a wrapper <div>, construct
the HTML for the list of accesskeys as a string, set the wrapper <div>'s innerHTML property, and finally add it to
the end of the page. Because of when user scripts are executed, complex changes to a page should be delayed until
after the page is done loading, so I use window.addEventListener to add an onload event that adds the
wrapper <div> to the page.

See Inserting complex HTML quickly for more information on the use of innerHTML, and Post−processing a page
after it renders for information on the use of window.addEventListener.

div = document.createElement('div');
div.id = 'accessbar−div−0';
desc = '<div><li class="first">' + descriptions[0] + '';
for (var i = 1; i < descriptions.length; i++) {
 desc = desc + '' + descriptions[i] + '';
}
desc = desc + '</div>';
div.innerHTML = desc;

Dive Into Greasemonkey 67

document.body.style.paddingBottom = "4em";
window.addEventListener(
 "load",
 function() {
 document.body.appendChild(div);
 },
 true);

Finally, in step 6, I add my own set of CSS declarations to the page so that the HTML I'm injecting will look pretty.
(Specifically, it will appear as a fixed black bar along the bottom of the page, that stays in view even as you scroll the
page. This is made possible by Firefox's support for the position:fixed display type.) See Adding CSS styles for
more information.

addGlobalStyle(
'#accessbar−div−0 {'+
' position: fixed;' +
' left: 0;' +
' right: 0;' +
' bottom: 0;' +
' top: auto;' +
' border−top: 1px solid silver;' +
' background: black;' +
' color: white;' +
' margin: 1em 0 0 0;' +
' padding: 5px 0 0.4em 0;' +
' width: 100%;' +
' font−family: Verdana, sans−serif;' +
' font−size: small;' +
' line−height: 160%;' +
'}' +
'#accessbar−div−0 a,' +
'#accessbar−div−0 li,' +
'#accessbar−div−0 span,' +
'#accessbar−div−0 strong {' +
' background−color: transparent;' +
' color: white;' +
'}' +
'#accessbar−div−0 div {' +
' margin: 0 1em 0 1em;' +
'}' +
'#accessbar−div−0 div ul {' +
' margin−left: 0;' +
' margin−bottom: 5px;' +
' padding−left: 0;' +
' display: inline;' +
'}' +
'#accessbar−div−0 div ul li {' +
' margin−left: 0;' +
' padding: 3px 15px;' +
' border−left: 1px solid silver;' +
' list−style: none;' +
' display: inline;' +
'}' +
'#accessbar−div−0 div ul li.first {' +
' border−left: none;' +
' padding−left: 0;' +
'}');

Download

accessbar.user.js <http://diveintogreasemonkey.org/download/accessbar.user.js>•

Dive Into Greasemonkey 68

http://diveintogreasemonkey.org/download/accessbar.user.js

See also

Adding CSS styles•
Doing something for every element with a certain attribute•
Inserting complex HTML quickly•
Post−processing a page after it renders•

Dive Into Greasemonkey 69

Chapter 6. Advanced Topics

6.1. Storing and retrieving persistent data

Greasemonkey defines two functions, GM_setValue and GM_getValue, that allow user scripts to store and
retrieve "private" data that only the user script can access. (Other scripts can't access them, not even other user
scripts.) You can use these functions to store script−specific configuration, to maintain a cache that persists between
pages, or to keep a permanent activity log.

Note:

Data stored with GM_setValue and retrieved with GM_getValue are similar to browser cookies,
but there are important differences. Both are stored on the local machine, but while cookies are
domain−specific and can only be accessed from their originating domain, Greasemonkey
configuration values are script−specific and can only be accessed by the user script that created them
(regardless of the URL that the user script is currently running on). And unlike cookies, user script
data are never transmitted to remote servers.

GM_setValue stores a script−specific configuration value, and GM_getValue retrieves it.

function GM_setValue(key, value);

function GM_getValue(key, defaultValue);

key argument is a string of no fixed format.value may be a string, boolean, or integer. ThedefaultValue
argument of GM_getValue is optional; if present, it will be returned if the requestedkey does not exist. If no
defaultValue is given and the requested key does not exist, GM_getValue will return undefined.

These functions were introduced in Greasemonkey 0.3. You should test whether they exist and degrade gracefully if
they do not.

Further reading

MyPIPsTag <http://dunck.us/code/greasemonkey/mypipstag.user.js> prompts you for a username the first
time you run it.

•

POST Interceptor <http://kailasa.net/prakash/greasemonkey/post−interceptor.user.js> adds menu items (with
GM_registerMenuCommand) to toggle whether the script is active.

•

MSDN Language Filter <http://blog.monstuff.com/archives/images/MSDNLanguageFilter.user.js> inserts its
configuration options into the page itself.

•

See also

GM_getValue•
GM_setValue•

Dive Into Greasemonkey 70

http://dunck.us/code/greasemonkey/mypipstag.user.js
http://kailasa.net/prakash/greasemonkey/post-interceptor.user.js
http://blog.monstuff.com/archives/images/MSDNLanguageFilter.user.js

6.2. Adding items to the menubar

Greasemonkey defines a function, GM_registerMenuCommand, that allows user scripts to add menu items to the
Firefox menu bar. Registered menu items appear in the User Script Commands submenu when the user script is
active.

function GM_registerMenuCommand(menuText, callbackFunction);

menuText is a string, the text of the menu item to add.callbackFunction is a function object. When the menu
item is selected, the callbackFunction function is called.

This function was introduced in Greasemonkey 0.2.6. You should test whether it exists and degrade gracefully if it
does not.

Further reading

POST Interceptor <http://kailasa.net/prakash/greasemonkey/post−interceptor.user.js> adds menu items to
toggle whether the script is active.

•

See also

GM_registerMenuCommand•

Dive Into Greasemonkey 71

http://kailasa.net/prakash/greasemonkey/post-interceptor.user.js

6.3. Integrating data from other sites

Greasemonkey defines a function, GM_xmlhttpRequest, that allows user scripts to GET data from any URL or
POST data to any URL.

See GM_xmlhttpRequest for more details and examples.

This function was introduced in Greasemonkey 0.2.6. You should test whether it exists and degrade gracefully if it
does not.

Further reading

LibraryLookup <http://weblog.infoworld.com/udell/gems/LibraryLookup.user.js> integrates Amazon.com
<http://www.amazon.com/> with your local library.

•

Annotate Google <http://ponderer.org/download/annotate_google.user.js> integrates Google
<http://www.google.com/> and del.icio.us <http://del.icio.us/>.

•

Bloglines Tweaks <http://persistent.info/greasemonkey/bloglines.user.js> adds an Expand button to article
summaries in Bloglines <http://www.bloglines.com/> to retrieve and display the full article.

•

Flick Batch Enhancer <http://lachnlone.no−ip.info/greasemonkey/flick_batch.user.js> uses
GM_xmlhttpRequest to add features to Flickr <http://www.flickr.com/> using Flickr's own REST API.

•

Hide Google Redirects <http://www.cs.toronto.edu/~james/greasemonkey/hide−google−redirects.user.js>
reprograms Google Personal Search History <http://www.google.com/searchhistory/> to use normal links, but still track clicks by calling GM_xmlhttpRequest on the appropriate tracking
URL.

•

Dive Into Greasemonkey 72

http://weblog.infoworld.com/udell/gems/LibraryLookup.user.js
http://www.amazon.com/
http://ponderer.org/download/annotate_google.user.js
http://www.google.com/
http://del.icio.us/
http://persistent.info/greasemonkey/bloglines.user.js
http://www.bloglines.com/
http://lachnlone.no-ip.info/greasemonkey/flick_batch.user.js
http://www.flickr.com/
http://www.cs.toronto.edu/~james/greasemonkey/hide-google-redirects.user.js
http://www.google.com/searchhistory/

6.4. Compiling your user script into an extension

Has your user script "outgrown" Greasemonkey's architecture? Does your user script need access to privileged
Javascript functions, local files, or other Firefox features that are only available to full−fledged browser extensions?
You can turn your user script into a full−fledged XPI with just a few clicks, thanks to Adrian Holovaty's amazing
Greasemonkey compiler <http://www.letitblog.com/greasemonkey−compiler/>!

Procedure: Compile Butler into a browser extension

Visit the Butler user script source code <http://diveintomark.org/projects/butler/butler.user.js>. From the
menu, select Edit−>Select All (Ctrl−A) to copy the user script's source code to the clipboard.

1.

Visit the Greasemonkey compiler <http://www.letitblog.com/greasemonkey−compiler/>.2.
Go to the "Javascript" field. From the menu, select Edit−>Paste (Ctrl−V) to paste the Butler user script source
code.

3.

In the "Creator" field, enterMark Pilgrim.4.
In the "Version" field, enter the current version of the Butler user script (0.3 as of this writing, but check the
script's metadata section for the actual version).

5.

Open a new window or tab and visit GUID Generator <http://extensions.roachfiend.com/cgi−bin/guid.pl> to
generate a random GUID. Copy the GUID to the clipboard, including the curly braces.

6.

Switch back to the "Greasemonkey compiler" page. In the "GUID" field, paste the GUID you got from the
GUID Generator.

7.

In the "Homepage" field, enterhttp://diveintomark.org/projects/butler/.8.
Click Create the Firefox extension. Firefox should pop up a dialog titled "Opening butler.xpi". Select Save to
disk and select a directory.

9.

Tada! You now have a version of Butler as a browser extension. Before you install the Butler extension, you should
first disable the Butler user script and verify that it is disabled by searching for something on Google
<http://www.google.com/>. Then install the Butler extension by selecting File−>Open... and selecting the
butler.xpi file you created with the Greasemonkey compiler. Be sure to restart your browser to finish the
installation.

An .xpi file is really just a ZIP archive with a certain directory structure. You can use any ZIP program (such as
7−zip <http://www.7−zip.org/> for Windows or Stuffit Expander <http://www.stuffit.com/> for Mac OS X) to
decompress the archive and look at the files that constitute the browser extension.

butler.xpi
|
+−− install.rdf
|
+−− chrome/
 |
 +−− butler/
 |
 +−− content/
 |
 +−− browser.xul
 |
 +−− contents.rdf
 |
 +−− javascript.js

There are four files involved. The two RDF files are mostly Firefox boilerplate. The other two contain the actual code.

Dive Into Greasemonkey 73

http://www.letitblog.com/greasemonkey-compiler/
http://diveintomark.org/projects/butler/butler.user.js
http://www.letitblog.com/greasemonkey-compiler/
http://extensions.roachfiend.com/cgi-bin/guid.pl
http://www.google.com/
http://www.7-zip.org/
http://www.stuffit.com/

install.rdf
Metadata about the extension itself, including name, version, description, and compatible versions of Firefox.

browser.xul
Bootstrap code that checks the current URL against the script's @include and @exclude parameters, and
then injects and executes the script.

contents.rdf
More metadata, Firefox boilerplate.

javascript.js
The original user script's source code.

Basically, the Greasemonkey compiler creates a really, really stripped down version of Greasemonkey that has no user
interface and automatically loads a single user script on the appropriate URLs. But now you have all the source files,
and you can do anything you want: create custom dialogs, modify preference panes, register menu items outside the
User Script Commands menu... go wild!

Further reading

Extension Developer's Extension <http://ted.mielczarek.org/code/mozilla/extensiondev/> is invaluable for
debugging and testing Firefox extensions.

•

Dive Into Greasemonkey 74

http://ted.mielczarek.org/code/mozilla/extensiondev/

Greasemonkey API Reference

Name

GM_log � log messages to the JavaScript Console

Synopsis

function GM_log(message);

Description

GM_log places output in the JavaScript Console. It is primarily used for debugging purposes.

History

GM_log was introduced in Greasemonkey 0.3.

See also

Logging with GM_log•
Tracking crashes with JavaScript Console•

Name

GM_getValue � get script−specific configuration value

Synopsis

returntype GM_getValue(key, defaultValue);

Description

GM_getValue retrieves a script−specific configuration value. The return value may be a string, boolean, or integer.
Thekey argument is a string of no fixed format. ThedefaultValue argument is optional; if present, it will be
returned if the requestedkey does not exist. If nodefaultValue is given and the requested key does not exist,
GM_getValue will return undefined.

Greasemonkey configuration values are similar to browser cookies, but there are important differences. Both are
stored on the local machine, but while cookies are domain−specific and can only be accessed from their originating
domain, Greasemonkey configuration values are script−specific and can only be accessed by the user script that
created them (regardless of the address the user script is currently running on). And unlike cookies, configuration
values are never transmitted to remote servers.

Dive Into Greasemonkey 75

Tip:

You can see all the stored configuration values by visiting about:config and filtering on
greasemonkey.scriptvals.

History

GM_getValue was introduced in Greasemonkey 0.3.

See also

GM_setValue•

Name

GM_setValue � set script−specific configuration value

Synopsis

function GM_setValue(key, value);

Description

GM_setValue stores a script−specific configuration value. Thekey argument is a string of no fixed format. The
value argument can be a string, boolean, or integer. Both arguments are required.

Greasemonkey configuration values are similar to browser cookies, but there are important differences. Both are
stored on the local machine, but while cookies are domain−specific and can only be accessed from their originating
domain, Greasemonkey configuration values are script−specific and can only be accessed by the user script that
created them (regardless of the address the user script is currently running on). And unlike cookies, configuration
values are never transmitted to remote servers.

History

GM_getValue was introduced in Greasemonkey 0.3.

See also

GM_getValue•

Name

GM_registerMenuCommand � add a menu item to the User Script Commands submenu

Dive Into Greasemonkey 76

Synopsis

function GM_registerMenuCommand(menuText,
callbackFunction);

Description

GM_registerMenuCommand adds a menu item to the Tools−>User Script Commands menu. ThemenuText
argument is a string, the text of the menu item to add. ThecallbackFunction argument is a function object.
When the menu item is selected, the callbackFunction function is called.

function callbackFunction(e);

Thee parameter is the menu selection event. I'm not sure if this is useful for anything.

Bugs

There is no way to set a menu accelerator key. Calling GM_registerMenuCommand('Some &menu text',
myFunction) will create a menu item titled "Some &menu text". (Bug 10090
<http://bugzilla.mozdev.org/show_bug.cgi?id=10090>)

History

GM_registerMenuCommand was introduced in Greasemonkey 0.2.6.

Name

GM_xmlhttpRequest � make an arbitrary HTTP request

Synopsis

GM_xmlhttpRequest(details);

Description

GM_xmlhttpRequest makes an arbitrary HTTP request. Thedetails argument is an object that can contain up
to seven fields.

method
a string, the HTTP method to use on this request. Required. Generally GET, but can be any HTTP verb,
including POST, PUT, and DELETE.

url
a string, the URL to use on this request. Required.

headers
an associative array of HTTP headers to include on this request. Optional, defaults to an empty array.
Example:

Dive Into Greasemonkey 77

http://bugzilla.mozdev.org/show_bug.cgi?id=10090

headers: {'User−Agent': 'Mozilla/4.0 (compatible) Greasemonkey',
 'Accept': 'application/atom+xml,application/xml,text/xml'}

data
a string, the body of the HTTP request. Optional, defaults to an empty string. If you are simulating posting a
form (method == 'POST'), you must include a Content−type of
'application/x−www−form−urlencoded' in the headers field, and include the URL−encoded
form data in thedata field.

onload
a function object, the callback function to be called when the request has finished successfully.

onerror
a function object, the callback function to be called if an error occurs while processing the request.

onreadystatechange
a function object, the callback function to be called repeatedly while the request is in progress.

onload callback

The callback function for onload takes a single parameter,responseDetails.

function onloadCallback(responseDetails);

responseDetails is an object with five fields.

status
an integer, the HTTP status code of the response. 200 means the request completed normally.

statusText
a string, the HTTP status text. Status text is server−dependent.

responseHeaders
a string, the HTTP headers included in the response.

responseText
a string, the body of the response.

readyState
unused

onerror callback

The callback function for onerror takes a single parameter,responseDetails.

function onerrorCallback(responseDetails);

responseDetails is an object with five fields.

status
an integer, the HTTP error code of the response. 404 means the page was not found.

statusText
a string, the HTTP status text. Status text is server−dependent.

responseHeaders
a string, the HTTP headers included in the response.

responseText
a string, the body of the response. The body of an HTTP error page is server−dependent.

readyState

Dive Into Greasemonkey 78

unused

onreadystatechange callback

The callback function for onreadystatechange is called repeatedly while the request is in progress. It takes a
single parameter,responseDetails.

function onreadystatechangeCallback(responseDetails);
responseDetails is an object with five fields. The responseDetails.readyState denotes what stage the
request is currently in.

status
an integer, the HTTP status code of the response. This will be 0 when responseDetails.readyState
< 4.

statusText
a string, the HTTP status text. This will be an empty string when responseDetails.readyState < 4.

responseHeaders
a string, the HTTP headers included in the response. This will be an empty string when
responseDetails.readyState < 4.

responseText
a string, the body of the response. This will be an empty string when responseDetails.readyState <
4.

readyState
an integer, the stage of the HTTP request.
1

loading. The request is being prepared.
2

loaded. The request is ready to be sent to the server, but nothing has been sent yet.
3

interactive. The request has been sent and the client is waiting for the server to finish sending data.
4

complete. The request is completed and all response data is available in other fields.

Examples

The following code fetches the Atom feed from http://greaseblog.blogspot.com/ and displays an alert with the results.

GM_xmlhttpRequest({
 method: 'GET',
 url: 'http://greaseblog.blogspot.com/atom.xml',
 headers: {
 'User−agent': 'Mozilla/4.0 (compatible) Greasemonkey',
 'Accept': 'application/atom+xml,application/xml,text/xml',
 },
 onload: function(responseDetails) {
 alert('Request for Atom feed returned ' + responseDetails.status +
 ' ' + responseDetails.statusText + '\n\n' +
 'Feed data:\n' + responseDetails.responseText);
 }
});

Dive Into Greasemonkey 79

http://greaseblog.blogspot.com/

Bugs

The onreadystatechange callback does not work properly with readyState < 4.

Notes

Unlike the XMLHttpRequest object, GM_xmlhttpRequest is not restricted to the current domain; it can GET or
POST data from any URL.

History

GM_xmlhttpRequest was introduced in Greasemonkey 0.2.6.

Futher reading

XMLHttpRequest support in Mozilla
<http://www.xulplanet.com/references/objref/XMLHttpRequest.html>

•

XMLHttpRequest support in Internet Explorer
<http://msdn.microsoft.com/library/default.asp?url=/library/en−us/xmlsdk/html/xmobjpmexmlhttprequest.asp>

•

XMLHttpRequest support in Safari <http://developer.apple.com/internet/webcontent/xmlhttpreq.html>•
HTTP status codes <http://www.w3.org/Protocols/rfc2616/rfc2616−sec10.html>•
RFC 2616 <http://www.w3.org/Protocols/rfc2616/rfc2616.html>•

Dive Into Greasemonkey 80

http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/xmobjpmexmlhttprequest.asp
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

List of "further reading" links
Greasemonkey script repository <http://dunck.us/collab/GreaseMonkeyUserScripts> contains hundreds of
Greasemonkey scripts. [1.3. Installing a user script]

1.

tag: URIs <http://taguri.org/> [2.2. Describing your user script with metadata]2.
Anonymous functions in Javascript <http://novemberborn.net/sifr/explained/terminology> [2.3. Coding your
user script]

3.

Block Scope in Javascript <http://youngpup.net/2004/jsblockscope> and associated discussion thread
<http://youngpup.net/2004/jsblockscope/comments> [2.3. Coding your user script]

4.

Introduction to the DOM Inspector <http://www.brownhen.com/DI.html> [3.3. Inspecting elements with
DOM Inspector]

5.

Inspect Element extension [3.3. Inspecting elements with DOM Inspector]6.
Inspector Widget extension <http://www.projectit.com/freestuff.html>, an alternative to the Inspect Element
extension that adds a toolbar button instead of a context menu item. [3.3. Inspecting elements with DOM
Inspector]

7.

Web Developer Extension <http://chrispederick.com/work/firefox/webdeveloper/> contains a plethora of
functions for deconstructing pages. [3.5. Other debugging tools]

8.

Aardvark <http://www.karmatics.com/aardvark/> interactively displays tag names, id and class attributes.
[3.5. Other debugging tools]

9.

Venkman Javascript Debugger <http://www.hacksrus.com/~ginda/venkman/> is a complete run−time
Javascript debugger. [3.5. Other debugging tools]

10.

Web Development Bookmarklets <http://www.squarefree.com/bookmarklets/webdevel.html> contains a
number of useful functions you can drag to your toolbar. [3.5. Other debugging tools]

11.

JSUnit <http://www.edwardh.com/jsunit/> is a unit testing framework for Javascript. [3.5. Other debugging
tools]

12.

js−lint <http://www.crockford.com/javascript/lint.html> checks Javascript code for common errors.
[3.5. Other debugging tools]

13.

Mozilla XPath documentation <http://www−jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath−tutorial.html>
[4.6. Doing something for every element with a certain attribute]

14.

XPath tutorial by example <http://www.zvon.org/xxl/XPathTutorial/General/examples.html> [4.6. Doing
something for every element with a certain attribute]

15.

XPathResult reference <http://www.xulplanet.com/references/objref/XPathResult.html> [4.6. Doing
something for every element with a certain attribute]

16.

CSS properties <http://www.westciv.com/style_master/academy/css_tutorial/properties/> [4.15. Setting an
element's style]

17.

Javascript event compatibility tables <http://www.quirksmode.org/js/events_compinfo.html>
[4.22. Overriding a built−in Javascript method]

18.

Javascript−DOM prototypes in Mozilla <http://www.mozilla.org/docs/dom/mozilla/protodoc.html>
[4.22. Overriding a built−in Javascript method]

19.

Displaying Event object constants <http://www.mozilla.org/docs/dom/domref/examples.html#999002>
[4.22. Overriding a built−in Javascript method]

20.

Event documentation <http://www.xulplanet.com/references/objref/Event.html> [5.7. Case study: Zoom
Textarea]

21.

MyPIPsTag <http://dunck.us/code/greasemonkey/mypipstag.user.js> prompts you for a username the first
time you run it. [6.1. Storing and retrieving persistent data]

22.

POST Interceptor <http://kailasa.net/prakash/greasemonkey/post−interceptor.user.js> adds menu items (with
GM_registerMenuCommand) to toggle whether the script is active. [6.1. Storing and retrieving persistent
data]

23.

MSDN Language Filter <http://blog.monstuff.com/archives/images/MSDNLanguageFilter.user.js> inserts its
configuration options into the page itself. [6.1. Storing and retrieving persistent data]

24.

POST Interceptor <http://kailasa.net/prakash/greasemonkey/post−interceptor.user.js> adds menu items to
toggle whether the script is active. [6.2. Adding items to the menubar]

25.

Dive Into Greasemonkey 81

http://dunck.us/collab/GreaseMonkeyUserScripts
http://taguri.org/
http://novemberborn.net/sifr/explained/terminology
http://youngpup.net/2004/jsblockscope
http://youngpup.net/2004/jsblockscope/comments
http://www.brownhen.com/DI.html
http://www.projectit.com/freestuff.html
http://chrispederick.com/work/firefox/webdeveloper/
http://www.karmatics.com/aardvark/
http://www.hacksrus.com/~ginda/venkman/
http://www.squarefree.com/bookmarklets/webdevel.html
http://www.edwardh.com/jsunit/
http://www.crockford.com/javascript/lint.html
http://www-jcsu.jesus.cam.ac.uk/~jg307/mozilla/xpath-tutorial.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.xulplanet.com/references/objref/XPathResult.html
http://www.westciv.com/style_master/academy/css_tutorial/properties/
http://www.quirksmode.org/js/events_compinfo.html
http://www.mozilla.org/docs/dom/mozilla/protodoc.html
http://www.mozilla.org/docs/dom/domref/examples.html#999002
http://www.xulplanet.com/references/objref/Event.html
http://dunck.us/code/greasemonkey/mypipstag.user.js
http://kailasa.net/prakash/greasemonkey/post-interceptor.user.js
http://blog.monstuff.com/archives/images/MSDNLanguageFilter.user.js
http://kailasa.net/prakash/greasemonkey/post-interceptor.user.js

LibraryLookup <http://weblog.infoworld.com/udell/gems/LibraryLookup.user.js> integrates Amazon.com
<http://www.amazon.com/> with your local library. [6.3. Integrating data from other sites]

26.

Annotate Google <http://ponderer.org/download/annotate_google.user.js> integrates Google
<http://www.google.com/> and del.icio.us <http://del.icio.us/>. [6.3. Integrating data from other sites]

27.

Bloglines Tweaks <http://persistent.info/greasemonkey/bloglines.user.js> adds an Expand button to article
summaries in Bloglines <http://www.bloglines.com/> to retrieve and display the full article. [6.3. Integrating
data from other sites]

28.

Flick Batch Enhancer <http://lachnlone.no−ip.info/greasemonkey/flick_batch.user.js> uses
GM_xmlhttpRequest to add features to Flickr <http://www.flickr.com/> using Flickr's own REST API.
[6.3. Integrating data from other sites]

29.

Hide Google Redirects <http://www.cs.toronto.edu/~james/greasemonkey/hide−google−redirects.user.js>
reprograms Google Personal Search History <http://www.google.com/searchhistory/> to use normal links, but still track clicks by calling GM_xmlhttpRequest on the appropriate tracking
URL. [6.3. Integrating data from other sites]

30.

Extension Developer's Extension <http://ted.mielczarek.org/code/mozilla/extensiondev/> is invaluable for
debugging and testing Firefox extensions. [6.4. Compiling your user script into an extension]

31.

XMLHttpRequest support in Mozilla
<http://www.xulplanet.com/references/objref/XMLHttpRequest.html> []

32.

XMLHttpRequest support in Internet Explorer
<http://msdn.microsoft.com/library/default.asp?url=/library/en−us/xmlsdk/html/xmobjpmexmlhttprequest.asp>
[]

33.

XMLHttpRequest support in Safari <http://developer.apple.com/internet/webcontent/xmlhttpreq.html> []34.
HTTP status codes <http://www.w3.org/Protocols/rfc2616/rfc2616−sec10.html> []35.
RFC 2616 <http://www.w3.org/Protocols/rfc2616/rfc2616.html> []36.

Dive Into Greasemonkey 82

http://weblog.infoworld.com/udell/gems/LibraryLookup.user.js
http://www.amazon.com/
http://ponderer.org/download/annotate_google.user.js
http://www.google.com/
http://del.icio.us/
http://persistent.info/greasemonkey/bloglines.user.js
http://www.bloglines.com/
http://lachnlone.no-ip.info/greasemonkey/flick_batch.user.js
http://www.flickr.com/
http://www.cs.toronto.edu/~james/greasemonkey/hide-google-redirects.user.js
http://www.google.com/searchhistory/
http://ted.mielczarek.org/code/mozilla/extensiondev/
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/xmobjpmexmlhttprequest.asp
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

List of tips
Many user scripts are available at the Greasemonkey script repository
<http://dunck.us/collab/GreaseMonkeyUserScripts>, although there is no requirement to list your scripts
there. You may host (and users may install) your script from anywhere. You don't even need a web server;
you can install a user script from a local file. [1.3. Installing a user script]

1.

You can specify the items of your user script metadata in any order. I like @name, @namespace,
@description, @include, and finally @exclude, but there is nothing special about this order.
[2.2. Describing your user script with metadata]

2.

When you click Edit in the "Manage User Scripts" dialog, you are "live" editing a copy of your script that is
buried deep inside your Firefox profile directory. I've gotten into the habit, once I've finished a "live" editing
session, of going back to my text editor one last time and selecting File−>Save as..., and saving the user script
in another directory. While it's not necessary (Greasemonkey only pays attention to the copy in your profile
directory), I prefer to keep the "master copy" of my scripts in another directory with the rest of my work.
[2.4. Editing your user script]

3.

In JavaScript Console, you can right−click (Mac users control−click) on any line and select Copy to copy it to
the clipboard. [3.2. Logging with GM_log]

4.

Once you have a reference to an element (like thisElement), you can use thisElement.nodeName to
determine its HTML tag name. If the page is served as text/html, the tag name is always returned as
uppercase, regardless of how it was specified in the original page. However, if the page is served as
application/xhtml+xml, the tag name is always lowercase. I always use
thisElement.nodeName.toUpperCase() and forget about it. [4.6. Doing something for every
element with a certain attribute]

5.

Inserting new content before someExistingElement.nextSibling will work even if
someExistingElement is the last child of its parent (i.e. it has no next sibling). In this case,
someExistingElement.nextSibling will return null, and the insertBefore function will
simply append the new content after all other siblings. (If this doesn't make any sense to you, don't worry
about it. The point is that this example will always work, even when it seems like it shouldn't.) [4.8. Inserting
content after an element]

6.

If all you want to do is remove ads, it's probably easier to install AdBlock <http://adblock.mozdev.org/> and
import an up−to−date filter list <http://www.geocities.com/pierceive/adblock/> than to write your own user
script. [4.9. Removing an element]

7.

Use the data: URI kitchen <http://software.hixie.ch/utilities/cgi/data/data> to construct your own data:
URLs. [4.12. Adding images without hitting a central server]

8.

You can use the addGlobalStyle function to style elements that you insert into a page, or elements that
were part of the original page. However, if you are styling existing elements, you should use the !
important keyword for each rule you define to ensure your styles override the rules defined by the original
page. [4.13. Adding CSS styles]

9.

Zapping and replacing document.body.innerHTML does not change everything about the page.
Anything defined in the <head> of the original page will still be in effect, including the page title, CSS
styles, and scripts. You can modify or remove these separately. [4.16. Post−processing a page after it renders]

10.

A submit event fires when a user submits a form in the usual way, i.e. by clicking the form's Submit button
or hittingENTER within a form. However, the submit event does not fire when the form is submitted via a
script calling aForm.submit(). Therefore you need to do two things to capture a form submission: add an
event listener to capture to submit event, and modify the prototype of the HTMLFormElement class to
redirect the submit() method to your custom function. [4.22. Overriding a built−in Javascript method]

11.

You can see all the stored configuration values by visiting about:config and filtering on
greasemonkey.scriptvals. []

12.

Dive Into Greasemonkey 83

http://dunck.us/collab/GreaseMonkeyUserScripts
http://adblock.mozdev.org/
http://www.geocities.com/pierceive/adblock/
http://software.hixie.ch/utilities/cgi/data/data

List of examples
Example: helloworld.user.js [2.1. Hello World]1.
Example: Hello World metadata [2.2. Describing your user script with metadata]2.
Example: Display the "Hello world!" alert [2.3. Coding your user script]3.
Example: Bad way to delay calling a function [2.3. Coding your user script]4.
Example: Better way to delay calling a function [2.3. Coding your user script]5.
Example: Best way to delay calling a function [2.3. Coding your user script]6.
Example: Write to JavaScript Console and continue (gmlog.user.js) [3.2. Logging with GM_log]7.
Example: Introduction to Javascript Shell [3.4. Evaluating expressions with Javascript Shell]8.
Example: Get properties of an element [3.4. Evaluating expressions with Javascript Shell]9.
Example: Metadata tags to match a domain and all subdomains [4.1. Executing a user script on a domain and
all its subdomains]

10.

Example: Alert the user if the GM_xmlhttpRequest function is not available [4.2. Testing whether a
Greasemonkey function is available]

11.

Example: Check if the page contains a <textarea> [4.3. Testing whether a page includes an HTML
element]

12.

Example: Loop through every element [4.4. Doing something for every HTML element]13.
Example: Find all the textareas on a page [4.5. Doing something for every instance of a specific HTML
element]

14.

Example: Find all the links on a page [4.6. Doing something for every element with a certain attribute]15.
Example: Find all the elements with a title attribute [4.6. Doing something for every element with a certain
attribute]

16.

Example: Find all <div>s with a class of sponsoredlink [4.6. Doing something for every element
with a certain attribute]

17.

Example: The xpath function [4.6. Doing something for every element with a certain attribute]18.
Example: Insert an <hr> before the main content [4.7. Inserting content before an element]19.
Example: Insert an <hr> after the navigation bar [4.8. Inserting content after an element]20.
Example: Remove an ad sidebar [4.9. Removing an element]21.
Example: Replace an image with its alt text [4.10. Replacing an element with new content]22.
Example: Insert a banner at the top of the page [4.11. Inserting complex HTML quickly]23.
Example: Add a graphical logo at the top of the page [4.12. Adding images without hitting a central server]24.
Example: Make paragraph text larger [4.13. Adding CSS styles]25.
Example: Get the styles defined by an element's style attribute [4.14. Getting an element's style]26.
Example: Get the actual style of an element [4.14. Getting an element's style]27.
Example: Setting style on a single element [4.15. Setting an element's style]28.
Example: Replace an entire page with custom content [4.16. Post−processing a page after it renders]29.
Example: Find all forms whose method is "POST" or "post" [4.17. Matching case−insensitive attribute values]30.
Example: Get the current domain [4.18. Getting the current domain name]31.
Example: Add a query parameter to the end of a link [4.19. Rewriting links]32.
Example: Redirect a site to its secure counterpart [4.20. Redirecting pages]33.
Example: Do something when the user clicks anywhere on the page [4.21. Intercepting user clicks]34.
Example: Do something before a form is submitted [4.22. Overriding a built−in Javascript method]35.
Example: Parse an arbitrary string as XML [4.23. Parsing XML]36.
Example: Parse XML from a remote source [4.23. Parsing XML]37.
Example: Redirect GMail to an equivalent https:// address [5.1. Case study: GMail Secure]38.
Example: Make Bloglines display all unread items automatically [5.2. Case study: Bloglines Autoload]39.
Example: aintitreadable.user.js [5.3. Case study: Ain't It Readable]40.
Example: offsiteblank.user.js [5.4. Case study: Offsite Blank]41.
Example: dumbquotes.user.js [5.5. Case study: Dumb Quotes]42.
Example: frownies.user.js [5.6. Case study: Frownies]43.
Example: zoomtextarea.user.js [5.7. Case study: Zoom Textarea]44.

Dive Into Greasemonkey 84

Example: accessbar.user.js [5.8. Case study: Access Bar]45.

Dive Into Greasemonkey 85

List of procedures
Procedure: Install the Greasemonkey extension [1.2. Installing Greasemonkey]1.
Procedure: Install the Butler user script [1.3. Installing a user script]2.
Procedure: Disable Butler temporarily [1.4. Managing your user scripts]3.
Procedure: Uninstall Butler [1.4. Managing your user scripts]4.
Procedure: Reconfigure Butler to leave Froogle alone [1.4. Managing your user scripts]5.
Procedure: Edit Hello World source code and see the results [2.4. Editing your user script]6.
Procedure: Open JavaScript Console [3.1. Tracking crashes with JavaScript Console]7.
Procedure: Install DOM Inspector [3.3. Inspecting elements with DOM Inspector]8.
Procedure: Inspect and edit the Dive Into Greasemonkey home page [3.3. Inspecting elements with DOM
Inspector]

9.

Procedure: Directly inspect an element with Inspect Element [3.3. Inspecting elements with DOM Inspector]10.
Procedure: Install Javascript Shell [3.4. Evaluating expressions with Javascript Shell]11.
Procedure: Compile Butler into a browser extension [6.4. Compiling your user script into an extension]12.

Dive Into Greasemonkey 86

Revision history

Revision History

Revision 2005−05−09 2005−05−09

Added Case study: Zoom Textarea.•
Added Storing and retrieving persistent data.•
Added Adding items to the menubar.•
Added Integrating data from other sites.•
Added Compiling your user script into an extension.•

Revision 2005−05−06 2005−05−06

Added Case study: Frownies.•
Changed void to function in Greasemonkey API Reference. ("You keep using that word. I do not think
it means what you think it means.")

•

Revision 2005−05−05 2005−05−05

Added What is Greasemonkey?. Thanks, Dennis.•
Added Case study: Dumb Quotes.•
Added downloadable Palm OS" database for reading on mobile devices.•

Revision 2005−05−04 2005−05−04

Added Parsing XML.•
Added Case study: Offsite Blank.•

Revision 2005−05−03 2005−05−03

Compressed videos further.•
Added videos to downloadable HTML distribution.•

Revision 2005−05−02 2005−05−02

Added GM_xmlhttpRequest.•
Added Case study: Ain't It Readable.•
Refactored Offsite Blank <http://diveintogreasemonkey.org/download/offsiteblank.user.js>.•
Updated code examples to Greasemonkey 0.3 format.•

Revision 2005−05−01 2005−05−01

Added Greasemonkey API Reference.•
Incorporated copious feedback from Simon Willison. Thanks, Simon.•
Incorporated copious feedback from Jeremy Dunck. Thanks, Jeremy.•

Revision 2005−04−30 2005−04−30

Added Getting Started.•
Added Your First User Script.•
Added Debugging User Scripts.•
Added videos (currently online only).•

Revision 2005−04−25 2005−04−25

Dive Into Greasemonkey 87

http://diveintogreasemonkey.org/download/offsiteblank.user.js

Initial publication•

Dive Into Greasemonkey 88

About this book
I wrote this book in DocBook XML <http://wiki.docbook.org/topic/DocBook> using Emacs
<http://www.gnu.org/software/emacs/emacs.html>. SAXON <http://saxon.sourceforge.net/> converted it to HTML
(with a customized version of Norman Walsh's XSL stylesheets
<http://docbook.sourceforge.net/projects/xsl/index.html>). HTMLDoc <http://www.easysw.com/htmldoc/> converted
it to PDF. w3m <http://w3m.sourceforge.net/> converted it to plain text. Plucker Distiller <http://www.plkr.org/>
converted it to a Palm OS" database so you can read it on mobile devices. An Ant <http://ant.apache.org/> script
automates the entire process.

I created the supplementary videos with CamStudio <http://www.swftools.com/tools−details.php?tool=8162413051>
and TMPGEnc <http://www.tmpgenc.net/>.

Dean Edwards wrote js−highlight <http://dean.edwards.name/my/behaviors/#js−highlight.htc>, which provides
automatic syntax highlighting of the Javascript examples.

If you're interested in learning more about DocBook for technical writing, you can download the XML source
<http://diveintogreasemonkey.org/download/diveintogreasemonkey−2005−05−09−xml.zip>, which includes the
version of DocBook and all the XSL stylesheets and build scripts I use to create the different versions of the book.
You should also read the canonical book, DocBook: The Definitive Guide
<http://www.docbook.org/tdg/en/html/docbook.html>. You can also subscribe to the DocBook mailing lists
<http://www.oasis−open.org/docbook/mailinglist/>.

Dive Into Greasemonkey 89

http://wiki.docbook.org/topic/DocBook
http://www.gnu.org/software/emacs/emacs.html
http://saxon.sourceforge.net/
http://docbook.sourceforge.net/projects/xsl/index.html
http://www.easysw.com/htmldoc/
http://w3m.sourceforge.net/
http://www.plkr.org/
http://ant.apache.org/
http://www.swftools.com/tools-details.php?tool=8162413051
http://www.tmpgenc.net/
http://dean.edwards.name/my/behaviors/#js-highlight.htc
http://diveintogreasemonkey.org/download/diveintogreasemonkey-2005-05-09-xml.zip
http://www.docbook.org/tdg/en/html/docbook.html
http://www.oasis-open.org/docbook/mailinglist/

GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.
 59 Temple Place, Suite 330,
 Boston,
 MA
 02111−1307
 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Version 2, June 1991

1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change free software − to make sure the
software is free for all its users. This General Public License applies to most of the Free Software Foundation's
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps:

copyright the software, and1.
offer you this license which gives you legal permission to copy, distribute and/or modify the software.2.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,

Dive Into Greasemonkey 90

we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2. Terms and conditions for copying, distribution, and modification

Section 0

This License applies to any program or other work which contains a notice placed by the copyright holder saying it
may be distributed under the terms of this General Public License. The "Program", below, refers to any such program
or work, and a "work based on the Program " means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term "modification ".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

Section 1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

You must cause the modified files to carry prominent notices stating that you changed the files and the date of
any change.

1.

You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of
this License.

2.

If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to view
a copy of this License.

Note: Exception:

If the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.

3.

Dive Into Greasemonkey 91

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

Accompany it with the complete corresponding machine−readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

1.

Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more
than your cost of physically performing source distribution, a complete machine−readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

2.

Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code
or executable form with such an offer, in accord with Subsection b above.)

3.

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

Section 5

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate

Dive Into Greasemonkey 92

your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to
patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit royalty−free redistribution
of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and "any later version", you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free Software Foundation.

Dive Into Greasemonkey 93

Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

3. How to apply these terms to your new programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Dive Into Greasemonkey 94

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain
conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than `show w' and `show c'; they could even be
mouse−clicks or menu items−−whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at
compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is
a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of this License.

Dive Into Greasemonkey 95

	Table of Contents
	Dive Into Greasemonkey
	Chapter 1. Getting Started
	1.1. What is Greasemonkey?
	1.2. Installing Greasemonkey
	1.3. Installing a user script
	1.4. Managing your user scripts

	Chapter 2. Your First User Script
	2.1. Hello World
	2.2. Describing your user script with metadata
	2.3. Coding your user script
	2.4. Editing your user script

	Chapter 3. Debugging User Scripts
	3.1. Tracking crashes with JavaScript Console
	3.2. Logging with GM_log
	3.3. Inspecting elements with DOM Inspector
	3.4. Evaluating expressions with Javascript Shell
	3.5. Other debugging tools

	Chapter 4. Common Patterns
	4.1. Executing a user script on a domain and all its subdomains
	4.2. Testing whether a Greasemonkey function is available
	4.3. Testing whether a page includes an HTML element
	4.4. Doing something for every HTML element
	4.5. Doing something for every instance of a specific HTML element
	4.6. Doing something for every element with a certain attribute
	4.7. Inserting content before an element
	4.8. Inserting content after an element
	4.9. Removing an element
	4.10. Replacing an element with new content
	4.11. Inserting complex HTML quickly
	4.12. Adding images without hitting a central server
	4.13. Adding CSS styles
	4.14. Getting an element's style
	4.15. Setting an element's style
	4.16. Post-processing a page after it renders
	4.17. Matching case-insensitive attribute values
	4.18. Getting the current domain name
	4.19. Rewriting links
	4.20. Redirecting pages
	4.21. Intercepting user clicks
	4.22. Overriding a built-in Javascript method
	4.23. Parsing XML

	Chapter 5. Case Studies
	5.1. Case study: GMail Secure
	5.2. Case study: Bloglines Autoload
	5.3. Case study: Ain't It Readable
	5.4. Case study: Offsite Blank
	5.5. Case study: Dumb Quotes
	5.6. Case study: Frownies
	5.7. Case study: Zoom Textarea
	5.8. Case study: Access Bar

	Chapter 6. Advanced Topics
	6.1. Storing and retrieving persistent data
	6.2. Adding items to the menubar
	6.3. Integrating data from other sites
	6.4. Compiling your user script into an extension

	Greasemonkey API Reference
	Name
	Synopsis
	Description
	History
	Name
	Synopsis
	Description
	History
	Name
	Synopsis
	Description
	History
	Name
	Synopsis
	Description
	Bugs
	History
	Name
	Synopsis
	Description
	Examples
	Bugs
	Notes
	History

	List of "further reading" links
	List of tips
	List of examples
	List of procedures
	Revision history
	About this book
	GNU General Public License
	1. Preamble
	2. Terms and conditions for copying, distribution, and modification
	3. How to apply these terms to your new programs

